
Graph Convolutional Reinforcement Learning

Sunoh Kim

Seoul National University

1

[1] Jiang, Jiechuan, et al. "Graph Convolutional Reinforcement Learning.", In ICLR, 2020.

Learning to Cooperate

 In multi-agent environments, learning to cooperate is important.

Battle

2

 The key is to understand the mutual interplay between agents.
But, it is hard to learn abstract representations of mutual
interplay between agents.

Learning to Cooperate

 In multi-agent environments, learning to cooperate is important.

Battle

3

 The key is to understand the mutual interplay between agents.
But, it is hard to learn abstract representations of mutual
interplay between agents.

 Graph convolutional reinforcement learning (DGN) is proposed
to promote agent’ cooperation by considering the underlying
graph of agents.

A Grid-World Platform: MAgent [2]

 Environment: A grid-world with 30 × 30 grids

 Each agent: One colored grid

 A local observation of the agent: A square view with 11 × 11 grids centered at the agent

 Actions of the agent: moving or attacking (two discrete actions)

 Scenarios: Battle and Jungle

4

[2] Zheng, Lianmin, et al. "MAgent: A many-agent reinforcement learning platform for artificial collective
intelligence.“, in AAAI, 2018.

A Grid-World

Actions

MoveAttack

A Grid-World Platform: MAgent [2]

 Battle:

𝑁 Agents learn to fight against 𝐿 enemies.

Each agent/enemy has six hit points.

(i.e., being killed by six attacks).

 Jungle:

This scenario is a moral dilemma.

There are 𝑁 agents and 𝐿 foods in the field, where
foods are stationary.

An agent gets positive reward by eating food, but gets
higher reward by attacking other agent.

5

[2] Zheng, Lianmin, et al. "MAgent: A many-agent reinforcement learning platform for artificial collective
intelligence.“, in AAAI, 2018.

A Grid-World Platform: MAgent [2]

6

[2] Zheng, Lianmin, et al. "MAgent: A many-agent reinforcement learning platform for artificial collective
intelligence.“, in AAAI, 2018.

 The problem is formulated as Markov Decision Process. At each
timestep, each agent receives a local observation, takes an
action, and gets an individual reward.

 The objective is to maximize the sum of all agents’ expected sum
of rewards.

Agent

Environment

Action

Observation

Reward

Graph Construction

 The multi-agent environment is constructed as a graph.

 Agents in the environment are represented by the nodes of the
graph.

 The feature of node is the encoding of local observation of agent.

7

 Each node 𝑖 has a set of neighbors 𝔹𝑖 which is determined by distance or other
metrics, depending on the environment, and varies over time.

 Unlike the static graph considered in GCNs, the graph of multi-agent environment is
dynamic and continuously changing over time as agents move or enter/leave the
environment.

Graph Convolutional Reinforcement Learning

8

 DGN consists of three types of modules:

Graph Convolutional Reinforcement Learning

9

 DGN consists of three types of modules:

1. Observation encoder: encodes the local
observation into a feature vector using MLP
(Multi Layer Perception).

Graph Convolutional Reinforcement Learning

10

 DGN consists of three types of modules:

1. Observation encoder: encodes the local
observation into a feature vector using MLP
(Multi Layer Perception).

2. Convolutional layer: integrates the feature
vectors in the local region and generate the
latent feature vector.

By stacking more convolutional layers, the
receptive field of an agent gradually grows.

Graph Convolutional Reinforcement Learning

11

 DGN consists of three types of modules:

1. Observation encoder: encodes the local
observation into a feature vector using MLP
(Multi Layer Perception).

2. Convolutional layer: integrates the feature
vectors in the local region and generate the
latent feature vector.

By stacking more convolutional layers, the
receptive field of an agent gradually grows.

3. Q-network: the features of all the preceding layers are concatenated and fed into the
Q network, so as to assemble and reuse the observation representation and
features from different receptive fields.

Graph Convolutional Reinforcement Learning

12

1. Observation encoder: encodes the local
observation into a feature vector using MLP
(Multi Layer Perception).

𝑖 : agent index

𝑡 : time step

𝔹𝑖 : a set of neighbors

𝑜𝑖
𝑡 : local observation

𝑎𝑖
𝑡 : action

𝑟𝑖
𝑡 : reward

𝑜𝑖
𝑡 ℎ𝑖

𝑡

M
LP

Graph Convolutional Reinforcement Learning

13

ℎ𝑖
𝑡 ℎ′𝑖

𝑡
C
o
n
v

C
o
n
v ℎ′′𝑖

𝑡

⋮

⋮

⋮

⋮

𝒊

𝔹𝒊 𝔹𝒊

𝑖 : agent index

𝑡 : time step

𝔹𝑖 : a set of neighbors

2. Convolutional layer: integrates the feature
vectors in the local region and generate the
latent feature vector.

By stacking more convolutional layers, the
receptive field of an agent gradually grows.

Graph Convolutional Reinforcement Learning

14

ℎ𝑖
𝑡 ℎ′𝑖

𝑡

C
o
n
v

⋮

⋮

𝒊

𝔹𝒊

𝐹𝑡 ∈ ℝ𝑁×𝐿: feature matrix

𝐶𝑖
𝑡 ∈ ℝ(𝔹𝑖 +1)×𝑁: adjacency matrix

𝐶𝑖
𝑡 × 𝐹𝑡 ∈ ℝ(𝔹𝒊 +1)×𝐿: feature vectors in the local region

𝑖 : agent index

𝑡 : time step

𝔹𝑖 : a set of neighbors

𝑁 : the number of agents

𝐿 : the length of feature
vector

2. Convolutional layer:

Relational Kernel [3]

15

[3] Zambaldi, Vinicius, et al. "Relational deep reinforcement learning." arXiv preprint arXiv:1806.01830,
2018.

Graph Convolutional Reinforcement Learning

16

3. Q-network: the features of all the preceding
layers are concatenated and fed into the Q
network, so as to assemble and reuse the
observation representation and features
from different receptive fields.

 Store the tuple in the

replay buffer

𝑖 : agent index

𝑡 : time step

𝔹𝑖 : a set of neighbors

𝑁 : the number of agents

𝑜𝑖
𝑡 : local observation

𝑎𝑖
𝑡 : action

𝑟𝑖
𝑡 : reward

: a set of observations

: a set of actions

: a set of next obs.

: a set of rewards

: a set of adjacency mat.

Graph Convolutional Reinforcement Learning

17

: a set of observations

: a set of actions

: a set of next obs.

: a set of rewards

: a set of adjacency mat.

 Store the tuple in the

replay buffer

 Sample a random minibatch of size S from

the replay buffer and minimize the loss

Q function parameterized by 𝜃

: the target

3. Q-network:

𝑄(𝑜𝑡, 𝑎𝑡) = 𝐸[෍

𝑘=0

∞

𝑟𝑡+1+𝑘 |𝑜𝑡 , 𝑎𝑡] 𝑎∗ = argmaxa 𝑄𝜋(𝑜
𝑡, 𝑎𝑡)] Q value function:  Optimal action:

Reinforcement Learning [4]

[4] Sutton, Richard S., and Andrew G. Barto. “Introduction to reinforcement learning.”, Vol. 135.
Cambridge: MIT press, 1998.

Graph Convolutional Reinforcement Learning

18

 Sample a random minibatch of size S from

the replay buffer and minimize the loss

Q function parameterized by 𝜃

3. Q-network:

: the target

Experiments

19

[2] Zheng, Lianmin, et al. "MAgent: A many-agent reinforcement learning platform for artificial collective
intelligence.“, in AAAI, 2018.

 Battle:

𝑁 Agents learn to fight against 𝐿 enemies.

Each agent/enemy has six hit points.

(i.e., being killed by six attacks).

 Jungle:

This scenario is a moral dilemma.

There are 𝑁 agents and 𝐿 foods in the field, where
foods are stationary.

An agent gets positive reward by eating food, but gets
higher reward by attacking other agent.

Experiments

20

 Routing:

The network consists of 𝐿 routers.

Each router is randomly connected to a
constant number of routers.

There are 𝑁 data packets (agents) with a
random size, and each packet is
randomly assigned a source and
destination router.

In the experiment, agents aim to quickly reach the destination while avoiding
congestion.

Experiments

21

 Battle:  Jungle:

Experiments

22

 Battle:  Jungle:Red : Our agents

Blue : Enemy

Red : Our agents

Blue : Food

Experiments

23

 Routing:

Conclusion

24

 We have proposed graph convolutional reinforcement learning.

 Our proposed network (DGN) adapts to the dynamics of the underlying graph of the
multi-agent environment and exploits convolution from gradually increased receptive
fields for learning cooperative strategies.

 Empirically, DGN significantly outperforms existing methods in a variety of
cooperative multi-agent scenarios.

Thank you

25

26

Final Report

0. Requirement

Ubuntu 16.04

Anaconda 3

Python 3.6

Cuda 9.2

Cudnn 7.6.3

27

Final Report

1. Setting RL Environment

First, we have to install MAgent [2] which is a research platform for multi-agent reinforcement
learning. MAgent aims at supporting reinforcement learning research that scales up from
hundreds to millions of agents.

Link : https://github.com/geek-ai/MAgent

 Installing MAgent on Linux:

git clone https://github.com/geek-ai/MAgent.git

cd MAgent

sudo apt-get install cmake libboost-system-dev libjsoncpp-dev libwebsocketpp-dev

bash build.sh

export PYTHONPATH=$(pwd)/python:$PYTHONPATH

(You may need to add this to the bashrc by typing “sudo vim ~/.bashrc”)

[2] Zheng, Lianmin, et al. "MAgent: A many-agent reinforcement learning platform for artificial collective
intelligence.“, in AAAI, 2018.

https://github.com/geek-ai/MAgent

28

Final Report

2. Installing Dependencies

Before implementing DGN [1], we need to create a new conda environment (If you want) and
install dependencies using pip.

Link : https://github.com/suno8386/DGN-reproduced

 Creating new conda environment:

conda create -n <Your Environment Name> python=3.6

conda activate <Your Environment Name>

 Cloning DGN codes and installing dependencies:

git clone https://github.com/suno8386/DGN-reproduced.git

cd DGN-reproduced

pip install -r requirements.txt

(Actually the authors used tensorflow 2.1.0 and Keras 2.3.1. But some functions are deprecated in
them. So, I used tensorflow 1.14.0 and Keras 2.0.8 and modified the codes accordingly.)

[1] Jiang, Jiechuan, et al. "Graph Convolutional Reinforcement Learning.", In ICLR, 2020.

https://github.com/geek-ai/MAgent
https://github.com/suno8386/DGN-reproduced
https://github.com/suno8386/DGN-reproduced.git

29

Final Report

3. Implementing DGN

Now, we will reproduce the result of the DGN [1] in the Routing scenario.

 Reproducing DGN:

cd Routing

without regularization

python routers.py

with regularization

python routers_regularization.py

The result will be saved in the log file.

e.g. /home/pil-kso/DGN-reproduced/log_router_gqn.txt

30

Final Report

 Reproduced Results

The number of agents (data packets): 𝑁 = 20

The number of routers: 𝐿 = 20

Delay: the average timesteps taken by packets from source to destination (The smaller, the better)

Throughput: the number of delivered packets per time step (The larger, the better)

DGN (in the
paper)

DGN
(reproduced w/o
regularization)

DGN
(reproduced)

Mean reward 1.23 0.56 1.23

Delay 8.0 18.74 8.23

Throughput 2.50 1.14 2.49

Table. evaluation on the Routing scenario

31

Final Report

 Code Outline

• class Router: define an object ‘Router’ that is randomly connected to a constant number of other

routers and become destination for the data packet (agent) to reach goal.

• class Edge: define an object ‘Edge’ where the Routers are randomly connected .

• class Data: define an object ‘Data’ (agent). There are 𝑁 data packets with a random size, and each

packet is randomly assigned a source and destination router. If there are multiple packets with the

sum size larger than the bandwidth of a link, they cannot go through the link simultaneously. They

aim to quickly reach the destination while avoiding congestion.

32

Final Report

 Code Outline

• def observation: define a method which makes observation of the data packet. At each time step,

the observation of a packet is its own attributes (i.e., current location, destination, and data size),

the attributes of cables connected to its current location (i.e., load, length), and neighboring data

packets (on the connected cable or routers).

• def set_action: define a method which sets action of the data packet. It takes some time steps for

the data packet to go through a cable, a linear function of the cable length. The action space of a

packet is the choices of next hop. Once the data packet arrives at the destination, it leaves the

system and another data packet enters the system with random initialization.

• def Adjacency: define a method which makes adjacency matrix of the graph.

• def MLP: define a method which models a multi-layer perception.

• def MultiHeadsAttModel: define a method which models a multi heads attention proposed in [3].

• def Q_Net: define a method which models a Q-network. You can find further details in [4].

 The main code is composed of 1) build the graph, 2) build the model, 3) playing, 4) training.

[3] Zambaldi, Vinicius, et al. "Relational deep reinforcement learning." arXiv preprint arXiv:1806.01830,
2018.

[4] Sutton, Richard S., and Andrew G. Barto. “Introduction to reinforcement learning.”, Vol. 135.
Cambridge: MIT press, 1998.

