Local Spectral Graph Convolution

for Point Set Feature Learning (Eccv 2018)
Chu Wang, Babak Samari, Kealeem Siddiqi

Mijeong Kim
Seoul National University

Recursive
— Cluster —
Pooling 1xm

Topic

» Data : Point Cloud
» Representing 3D model via N points(X, y, z coordinates).

» Task : Feature learning of point set for classification & part segmentation

skateboard

— F)

pistol

3D bunny model Point Cloud
representation

Classification & Part segmentation
J. Y. Choi. SNU

Previous Work

* PointNet++
» Using k nearest neighbor points of each point to learn feature of that point.

= Limitation
— MLP: each point features are obtained by an independent and isolated manner.
— Max Pooling: can loose significant information

X |
MLP hx)

MLP , Max
Poolin
L Ooling | 1 X m

Shared

MLP

J. Y. Choi. SNU

Qi, C.R.,Yi, L., Su, H., Guibas, L.J.: Pointnet++: Deep hierarchical feature learning on point sets in a metric space. NIPS (2017)

Previous Work

» PointNet++
» Using k nearest neighbor points of each point to learn feature of that point.

= Limitation
— MLP: each point features are obtained by an independent and isolated manner.
— Max Pooling: can loose significant information

skip link concatenation

..

unit it
interpolate ; interpolate uni
= pointnet Cin pointnet

e

Classification

(1,C4)
grouping grouping e g
U I J
Y Y
set abstraction set abstraction —

pointnet fully connected layers

J. Y. Choi. SNU

Local Spectral Graph Convolution

for Point Set Feature Learning (Eccv 2018)
Chu Wang, Babak Samari, Kealeem Siddiqi

Recursive
— Cluster —
Pooling 1xm

Local Spectral GCN

= Local k-NN graph
» Each local graph is formulated with pair-wise distance
= Jointly learn features using local structural information via k-NN local graph

» Laplacian of each local graph can be computed in learning (end-to-end)

— In previous work(ChebNet, Simplified ChebNet), graph laplacian should be precomputed
before training or testing because of large graph size

Spec Recursive
o ‘ Graph ‘ — — Cluster —

Conv Pooling 1xm

J. Y. Choi. SNU

Local Spectral GCN

= Local k-NN graph
» Each local graph is formulated with pair-wise distance
= Jointly learn features using local structural information via k-NN local graph

» Laplacian of each local graph can be computed in learning (end-to-end)

— In previous work(ChebNet, Simplified ChebNet), graph laplacian should be precomputed
before training or testing because of large graph size

Spec Recursive
—"" Graph ‘—r — Cluster —

Conv Pooling 1 x m

J. Y. Choi. SNU

Local Spectral GCN

~ Spec Recursive
> Graph R _ Cluster e—
. Conv Pooling 1 X m
k X m
Fourier = Spec (=] Feature Reverse
X - 1 P=GX - Q=PW oy =
Modulation'L G J Filtering Q Fourier y UQ
k x m k x m k X m k x m' k xm'

» Spectral modulation matrix, G: modulate the frequency components
* The feature filter W: change the dimension of each node
» These parameters are shared by all the k-NN local graph in same layer.

J. Y. Choi. SNU

Recursive spectral clustering pooling Recursive

— Cluster —
Pooling 1 X m

» Recursive spectral clustering pooling kx m

» Using the Fiedler vector similar to normalized cut,
cut the local graph into k i clusters whose size should be pre-defined c

* Pooling each clusters to one node with max pooling or average pooling

* Then the number of nodes became k_I. And iterating clustering, until the
number of nodes smaller than pre-definedc. (i=1, 2,)

suNyg
| . .‘b';
. . “
. . : e T

. - o',
037 04 “’ 037 : .: 04 $‘
. * %

| iteration clustering | / st-./%

(ko= k) 081 045 c= S0 fogie weus: Alternate pooling
0 0.82 = 082 .: - . ".‘..

......
.........
.........

0.8
ki_1Xm ki_lox m k; xm
J. Y. Choi. SNU (k; = ki_1/c)

Recursive spectral clustering pooling Recursive

— (Cluster ——
Pooling 1 X m

= Limitation of Max pooling k xm
= Can not preserve information from disjoint sets of points within in k-NN

» Recursive spectral clustering pooling

= Capture fine local structures in local neighborhood
= Aggregating features in local k-NN graph by recursively clustering
» Pooling only within a cluster of similar abstract point features

bird human

o
NS

\T | ““\’tu;\

k X m
All points in a k-nn graph Visualization of spectral coordinates for a bird and a human

J. Y. Choi. SNU

Recursive spectral clustering pooling

* Limitation of Max pooling

Recursive

R

Cluster

Pooling

k xm

= Can not preserve information from disjoint sets of points within in k-NN

» Recursive spectral clustering pooling

= Capture fine local structures in local neighborhood

= Aggregating features in local k-NN graph by recursively clustering
» Pooling only within a cluster of similar abstract point features

All points
in a k-nn graph

J. Y. Choi. SNU

el

Cluste:;‘g//

Alternate

poolV

Clustering

<>

-
>
> [N
=

<

mm omm
<O

<

Alternate

pooli,V

—>

V-

Clustering
/

—

Alternate

poolinV

7

-

Results

» Part segmentation on ShapeNet

handbag skate-board

.

J. Y. Choi. SNU

table

lamp airplane knife

<P\

Improvement

= Captures fine
local structures

successfully
segment
connected parts
of a 3D object

12

Results

= Classification

McGill Shape McGill Shape MNIST dataset ModleNet40
Benchmark Benchmark -2d pointcloud (acc, %)
(instance acc, %) (category cc, %) (error rate, %)
Others - - 0.811 -
PointNet++ 93.06 93.27 0.55 91.9
Spectral GCN 95.83 95.74 0.42 92.1
» Part Segmentation
ShapeNet (mIOU, %) ScanNet (Acc, %)

Others 84.7012 73.9013;
PointNet+ + 84.90 84.00
Spectral GCN 85.40 84.80

J. Y. Choi. SNU

[1] Monti, F., Boscaini, D., Masci, J., Rodol'a, E., Svoboda, J., Bronstein, M.M.: Geometric deep learning on graphs and manifolds using mixture model cnns. CVPR 2017 (2016)
[2] Yi, L., Su, H., Guo, X., Guibas, L.: Syncspeccnn: Synchronized spectral cnn for 3d shape segmentation. In: Computer Vision and Pattern Recognition (CVPR) (2017)
[3] Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: Deep learning on point sets for 3d classification and segmentation. arXiv preprint arXiv:1612.00593 (2016)

13

Ablation study

= Classification

McGill Shape McGill Shape MNIST dataset
Benchmark Benchmark -2d pointcloud M?:cliN;;‘m
(instance acc, %) (category cc, %) (error rate, %) v 0
Others - - 0.811 -
PointNet+ +
(MLP + max pooling) 93.06 93.27 0.55 91.5
Spectral GCN 95.14 95.43 i 91.9
+ max pooling
Spectral GCN 95.83 95.74 0.42 92.1

+ recursive pooling

= Part Segmentation

» There is no ablation study on part segmentation

J. Y. Choi. SNU

14

Summary

= | ocal spectral GCN
= Jointly learn features with graph convolution in spectral domain
» Local graph: End to end learning

» Recursive spectral clustering pooling

= Aggregate information form within clusters of nodes that are closed to one another in their
spectral coordinates

= Captures fine local structures within a cluster

» Limitation
» There is a permutation problem on fully connected layer after hierarchical feature learning.
» The size of a cluster is fixed in recursive pooling and this can leads wrong clustering.
= Local spectral GCN > Recursive spectral clustering pooling

J. Y. Choi. SNU

15

Code Reproduce and Experiments

Recursive
— Cluster —
Pooling 1xm

16

Code Reproduce — Experiment Analysis

= Classification on ModelNet 40

= Baseline

» Experiment3 is same setting with paper’s best model except training epoch.

» Randomness(new)
» Replace alternative pooling to random pooling (between max pooling and average pooling) in sSpectral clustering layers.

= | expect the random pooling with smaller cluster size will performs better. It is because the local features can
be vary to its topology, so random pooling can be helpful. (exp 2) However, random pooling can be bad for
locality, so | reduce cluster size.(exp 1). The randomness shows better performance. However, | should train
more epoch to compare with paper result.

Model Experiment1 Experiment2 Experiment3 best model
(paper)
Epoch 40 83 40 83 40 83 251
Pooling Random Random Alternative Alternative
Cluster size 2 4 -> 2 4 -> 2 4 -> 2
Acc 89.991 90.559 89.830 90.640 89.508 - 92.1

J. Y. Choi. SNU

17

Code Reproduce — Dataset Analysis

» Analysis on ModelNet:

= | visualize training results on the modelnet via with mpl_toolkits.mplot3d, Axes3D. (not model 40 - time limit)

» The original objects themselves have very noisy face index data. Consider the fact that most of the error
came from confusion between [‘'desk’, ‘table’] and [‘dresser’,'nightstand’].

48 0 0O O 0 0 0 0 1
Bed
2088 o 0O 0 0 0 0 O
0 00100 0 0 0 0 0 0 O
. o 0 071 1 0 0 110 0
Nightstand
O 0 0 477 2 10 0o 0 o0
Red: dresser
o 0 0o 0 o9 0o 0o 0 O
Tub O 0 0O 1 8 073 2 1 0
0o 0 0 2 0 0 09 0 o
0 2 0o 7 0 0 3 o/ 8 o
Table O 0 0 1 0 1 0 0 o-
Red: desk

There are some correlation on between certain categories

. | (nightstand/dresser) (table/desk)
J. Y. Choi. SNU ’ 8

Code Reproduce — Setup

= My GCN github link: https://github.com/mjmjeong/GCN-project
= | change some code from open code: https://github.com/fate3439/LocalSpecGCN
» The below descriptions are also included in README.md

* Environments
= CUDA: 10.0
= Python: 3.6.9
= Tensorflow: 1.13.0
= Requirements: cv2, hd5y

* Implements procedurel

= download dataset from https://shapenet.cs.stanford.edu/media/modelnet40 normal resampled.zip

= put whole directory(modelnet40 _normal_resampled)
in data directory Please refer to the Dataset Download.

cd data
unzip modelentd® normal resampled.zip

J. Y. Choi. SNU

19

https://github.com/mjmjeong/GCN-project
https://github.com/fate3439/LocalSpecGCN
https://shapenet.cs.stanford.edu/media/modelnet40_normal_resampled.zip

Code Reproduce — Setup

* Implements procedure2 — tf_opt
» You should change CUDA path in .sh file.

cd tf ops/3d _interpolaticon

sh tf_interpolate complie.sh If framework error,

cd ../grouping Ln —rs libtensorflow-

sh tf_grouping_complie.sh framework.so.1 libtensorflow-
cd ../sampling nd framework.so £ soft link 44 4

sh tf sampling compile.sh

* Implements procedure3 — train

For configuration can be modified in training_cmd.sh or train.py Then, training outputs are saved in classification/log .

cd classification
sh training_cmd.sh

* Implements procedure4 — evaluate

_ - Experiments1: spec_cp_random_csize_2
You can get trained model from classification/log/ Experiments2: spec_cp_random

Experiments3: spec_cp_default

J. Y. Choi. SNU

20

Code Analysis

» Code structure (Only the important things)

= Classification

= models/pointnet2 cl
S_SSg_spec_cp.py
= Get model function

(22p0fl &)

= train.py

= Log

* Training log, model

J. Y. Choi. SNU

S NH

= util

= Spec_Graph_util.py

Get adj matrix function
(cos or Euclidean)

Get Laplacian function
Get knn graph function
Spec_hier_clustering
pooling function

Spectral convolution
function

tf_opt
= This is based on 3d point
cpp code.

= Sampling_nd

* [t sampling n dimension
points Model

= Grouping
» 3d Interpolation

21

Code Analysis

= classification/models/pointnet2_c Is _ssg _spec_cp.py get model

abstraction layers

11_points, 11_indices = pointnet_sa module(l0_xyz, 10 _points, npoint=512, radius=0.2, = In “get model” function
nsample=32, mlp=[64,64,128], mlp2=None, group_all=False, 1is_training=is_training, ‘ The property of each Iayers can
bn_decay=bn_decay, scope='layerl') : e

12 points, 12 indices = pointnet sa module spec{11 xyz, 11 points, npoint=128, be modified. In here, we can also
radius=0.4, nsample=32, mlp=[128,256], mlp2=[256], group all=False, Change the number of nodes.
is_training=is_training, bn_decay=bn_decay, scope='layer2' , knn=True ,
spec_conv_type = 'mlp', structure='spec' , useloc covmat = True, pooling='max')

13 points, 13 indices = pointnet sa module spec(12 xyz, 12 points, npoint=32,

radius=0.4, nsample=8, mlp=[256,512], mlp2=[512], group all=False,

is_training=is_training, bn_decay=bn_decay, scope='layer3' , knn=True, 1) Iayerl: gcn

spec_conv_type = 'mlp', structure='spec' , useloc covmat = True,

pooling='hier cluster pool', csize = 2) 2) layer2: spectral gcn

14 points, 14 indices = pointnet sa module spec(l3 xyz, 13 points, npoint=None,
radius=None, nsample=None, mlp=[512,1024], mlp2=None, group_all=True, 3) layer3: spectral gcn
is training=is_training, bn_decay=bn_decay, scope='layer4', knn=True ,

spec_conv_type = 'mlp', structure='spec' , useloc covmat = True, pooling='max')

4) layer4: spectral gcn

g i -l a I':r'l ers

_t. -tf ;eshépeEld_f::c:ints , [batch _size, -1]) 5) FuIIy connected

tf_util. fully_connected(net, 512, bn=True, is training=is_training, scope='fcl', bn_dec:

tf util.dropout(net, keep pro .5, 1s training=is training, scope='dpl')

tf util. fully connected(net, bn=True, is training=is_ training, scope='fc2', bn_dec: csize: cluster size
tf util.dropout(net, keep prob=0.5, is training=is training, scope='dp2') . : ;

tf util.fully connected(net, 40, activation fn=None, scope='fc3') mlp' feature dimension
nsample: number of knn sample

J. Y. Choi. SNU

Code Analysis

Fourier Spec

Feature Reverse

(

X

Modulation

k X m k X m

= utlis/spec_graph_utils.py: spec_conv2d

¥2d(inputs,
num_output channels,
scope,
nn_k = None,
local cord = None,
use_ xavi True,
stddev=1
weight decay=0.0,
activation_fn=None,
bn=False,
bn_decay=None,
is training=None):

in_shape = inputs.get_shape().as_list()

j_ma%_dist_euclidean(local_cord[:,:,:,ﬂ:
ntity(w, name='adjmat')

t ad
.ide

3] , flag normalized = True)

construct k nearest neighbor
if nn_k is not None:

num_neigh = nn_k

W _knn = cov_mat_k nn_graph(W, k
else:

W knn = W

graph if desired

num_neigh)

set diag

W_knn corv_mat_setdiag zero(W knn)
W knn = tf.identity(W knn, name='adjmat knn')
L
L

corv_mat laplacian®@(W knn , flag normalized = True)
tf.identity(L, name='laplacian')

J. Y. Choi. SNU

P=GX Q =PW uQ

k xm'

) 4

Fourier

Filtering

k X m k xm'

= Spec_conv2d
: This is for spectral convolution shown in above figure

. It get adj matrix and Laplacian during training (end to end)

1) Get adj matrix
- Whole adj matrix and local knn adj matrix
2) Get Laplacian matrix

- It can be chosen between normalized L or not.

23

Feature Reverse

Code Analysis o Lrower [o e

Modulation

k X m k X m
= utlis/spec_graph_utils.py: spec_conv2d

egval , egvect = tf.self adjoint eig(L)
U = egvect
UT = tf.transpose(U , perm = [0,1,3,2])

transform input to fourier domain
inputs fourier = tf.matmul(UT , inputs)

filtered = inputs fourier

feat expansion
for i, num out channel in enumerate(num output channels):
filtered = conv2d(filtered, num out channel, [1,1],

padding='VALID', stride=[1,1],
bn=False, is training=is training,
scope= scope + 'conv2d %d'%(i),
bn_decay=bn_decay,
activation fn = None)

outputs = tf.matmul(U , filtered)
#BN and relu

outputs = batch_norm_for_conv2d(outputs, is_training, bn_decay=bn_decay, scope='bn_pos
outputs = tf.nn.relu(outputs)

return outputs, UT

J. Y. Choi. SNU

[p=cx Q=PW y = UQ

k X m k xm' k xm'

Fourier

Filtering

= Spec_conv2d
: This is for spectral convolution shown in above figure

. It get adj matrix and Laplacian during training (end to end)

3) Eigen value decomposition

- To get eigen value and eigen vector to fourier
transformation

4) Convolution in spectral domain

- feat expansion

24

Code Analysis

= utlis/spec_graph_utils.py: spec_hier cluster_pool (add randomness)

def spec_hier cluster pool(inputs , pool method = 'max' , csize = 4, use dist adj = False, .
fast_approx = False, include eig = False): n Spec hier cluster p00|
in_shape = inputs.get shape().as_list() - - -
inputs_ = inputs = "] ol
et : node & featureE nodel CHSH poolingdt= layer.
K = 1n_shape[2 s =
eig 2nd_saved = list() (nOde T= E?:I

S e o : : spectral clustering pooling method

» Tlag_use_laplacian = False) 1) Make a graph with cos distance between points

Jnat . Tlag nomalized = True) 2) Then compute Laplacian and EVD.

ljoint

Ll - _ . 3) Until total number of node is smaller than csize,
ind = tf.constant(np.array([1]) ,dtype=tf.int32) . .
partition_vect = tf.squeeze(tf.gather(egvect, ind , axis=-1)) # B N K reCUI‘SIvely pOOlIng.

eig 2nd saved.append(partition_vect)

| 4) Fisrt find 2" eigen vector, and split the vector via
e RN e R e csize (partition vector has the indices of each
cluster members.)

(sort_ind , [in_shape[0] * in_shape[1l] , K 1)

1 , K, in_shape[3]])
B ording to 2nd eig LT , 2nd hal forms 2 clusters
inputs = gather point(inputs, sort_ind) !
else:
inputs = tf.reshape(inputs , [in _shape[0] * in shape[l] , K , in shape[3]])

]. Y. Choi. SNU 25

Code Analysis

= utlis/spec_graph_utils.py: spec_hier_cluster_pool

else:
inputs = tf.reshape(inputs in_ * in_shape[l] , K , in_shape[3]1])
-> BN, m, C » last dimen on
inputs = tf.t pose(inputs ,
if randomness:
X = random()
if x»0.5:
inputs = tf.reduce max(inputs, axis = -1)
else:
inputs = tf.reduce mean(inputs, axis

| ing in-cluster; alternate pool method
if pool method == 'max':
inputs = tf.reduce max(inputs , axis -1)
pool_method = 'avg'
elif pool_method == 'avg':

inputs = tf.reduce mean(inputs , axis = -1)
*thod = 'max’
BN , m,
K = int(|
inputs = tf.reshape(tf.transpose(inputs, perm = [0,2,1]) ,
[in_shape[0] , in_shape[1] , K , in_shape[3]])

inputs now have B N K m where K <= csize, reduce on -2 dim

if pool method =
inputs = tf.reduce max(inputs , axis = -2, keep dims = True)
pool method = 'avg’

elif pool_method == 'avg':
inputs = tf.reduce mean(inputs , axis = -2, keep dims = True)
pool method = 'max’

outputs = inputs
return outputs

J. Y. Choi. SNU

» Spec_hier_cluster_pool

: node 2 feature’ = node0l CH3H poolingSH= layer.
A= =0

(node T= =&

. spectral clustering pooling method

5) Combine each cluster to one node(pooling)

6-1) Previous method, just alternative select
between max pooling and average pooling.

6-2) Changed method, random select
between max pooling and average pooling

7) If total number of nodes are smaller than csize,
pooling those nodes via average or max pooling.

-> then get final one node. (finish)

26

J. Y. Choi. SNU

Thank you

27

