
Adversarial Attacks on
Graph Neural Networks via Meta Learning

Hoki Kim

Seoul National University

1

H. K. Kim. SNU

Adversarial Attacks on Graph Neural Networks via Meta Learning

 Daniel Zügner, Stephan Günnemann

 Technical University of Munich, Germany

 ICLR 2019

 Keywords

 Adversarial Attacks

 Graph Neural Networks

 Meta Learning

2

H. K. Kim. SNU

Adversarial Attacks on Graph Neural Networks via Meta Learning

 Adversarial Attacks
 Degrade performance of a machine learning model

H. K. Kim. SNU

Adversarial Attacks on Graph Neural Networks via Meta Learning

 Adversarial Attacks
 Training time attack (poisoning) : Modifying few training examples to worsen the

performance

4

https://towardsdatascience.com/how-to-attack-machine-learning-evasion-poisoning-inference-trojans-backdoors-a7cb5832595c

H. K. Kim. SNU

Adversarial Attacks on Graph Neural Networks via Meta Learning

 Problem Formulation
 Task : Semi-supervised node classification

 Goal : Generate modified graph ෠𝐺 = (መ𝐴, 𝑋) from the original graph 𝐺 = (𝐴, 𝑋) to increase the
misclassification rate of GNN trained with ෠𝐺 .

 Constraints : adversarial attacks should be unnoticeable.

5

Limit the number of

changes on edges
Node becomes disconnected

(i.e. a singleton) during the attack

𝐴 − መ𝐴
0
≤ Δ

Unnoticeability constraint

on the degree distribution

Node Degree d=2

Check ෠𝐺, 𝐺 are from same distribution
by using likelihood ratio test

𝐴𝑇 = 𝐴 = 0, 1 𝑁×𝑁

H. K. Kim. SNU

Adversarial Attacks on Graph Neural Networks via Meta Learning

 Problem Formulation
 Task : Semi-supervised node classification

 Goal : Generate modified graph ෠𝐺 = (መ𝐴, 𝑋) from the original graph 𝐺 = (𝐴, 𝑋) to increase the
misclassification rate of GNN(𝒇𝜽) trained with ෠𝐺 .

 Constraints 𝜱(𝑮)

6

min
෠𝐺∈Φ(𝐺)

𝐿𝑎𝑡𝑘 𝑓𝜃∗ ෠𝐺 = −𝐿𝑡𝑟𝑎𝑖𝑛 𝑓𝜃∗ ෠𝐺

s.t. 𝜃∗ = argmin
𝜃

𝐿𝑡𝑟𝑎𝑖𝑛 𝑓𝜃 ෠𝐺

∗ 𝑳𝒕𝒓𝒂𝒊𝒏 : loss function (e.g. cross-entropy)

H. K. Kim. SNU

Adversarial Attacks on Graph Neural Networks via Meta Learning

 Meta Learning
 Train a model on a variety of learning tasks, such that it can solve new learning tasks using

only a small number of training samples

 Given task distribution 𝑝 𝑇 and it’s corresponding loss function 𝐿𝑇𝑖 ,

7

Finn, Chelsea, Pieter Abbeel, and Sergey Levine. "Model-agnostic meta-learning for fast adaptation of deep networks."

min
𝜃

σ𝑇𝑖~𝑝(𝑇)
𝐿𝑇𝑖 𝑓𝜃∗ s.t. 𝜃∗ = argmin

𝜃
𝐿𝑇𝑖 𝑓𝜃

H. K. Kim. SNU

Adversarial Attacks on Graph Neural Networks via Meta Learning

 Meta Learning
 Given task distribution 𝑝 𝑇 and it’s corresponding loss function 𝐿𝑇𝑖 ,

8

min
𝜃

σ𝑇𝑖~𝑝(𝑇)
𝐿𝑇𝑖 𝑓𝜃∗ s.t. 𝜃∗ = argmin

𝜃
𝐿𝑇𝑖 𝑓𝜃

min
෠𝐺∈Φ(𝐺)

𝐿𝑎𝑡𝑘 𝑓𝜃∗ ෠𝐺 s.t. 𝜃∗ = argmin
𝜃

𝐿𝑡𝑟𝑎𝑖𝑛 𝑓𝜃 ෠𝐺

Very similar to each other

H. K. Kim. SNU

Adversarial Attacks on Graph Neural Networks via Meta Learning

 Adversarial Attack + Meta Learning
 Find an optimal perturbation for dropping the accuracy of the final model.

(1) Train Model

(2) Get Meta Gradient

9

𝜃𝑇 = 𝜃𝑇−1−𝛼 𝛻𝜃𝑇−1 𝐿𝑡𝑟𝑎𝑖𝑛 𝑓𝜃𝑇−1 𝐺

𝛻𝐺
𝑚𝑒𝑡𝑎 = 𝛻𝐺𝐿𝑎𝑡𝑘 𝑓𝜃𝑇 𝐺 = 𝛻𝑓𝐿𝑎𝑡𝑘 𝑓𝜃𝑇 𝐺 ⋅ 𝛻𝐺𝑓𝜃𝑇 𝐺 + 𝛻𝜃𝑇𝑓𝜃𝑇 𝐺 ⋅ 𝛻𝐺𝜃𝑇

H. K. Kim. SNU

Adversarial Attacks on Graph Neural Networks via Meta Learning

 Adversarial Attack + Meta Learning (Approx.) + Self-Training
 For reducing computational complexity,

10

≈ 𝛻𝑓𝐿𝑎𝑡𝑘 𝑓෩𝜃𝑇 𝐺 ⋅ 𝛻𝐺𝑓෩𝜃𝑇 𝐺

𝛻𝐺
𝑚𝑒𝑡𝑎 = 𝛻𝐺𝐿𝑎𝑡𝑘 𝑓𝜃𝑇 𝐺 = 𝛻𝑓𝐿𝑎𝑡𝑘 𝑓𝜃𝑇 𝐺 ⋅ 𝛻𝐺𝑓𝜃𝑇 𝐺 + 𝛻𝜃𝑇𝑓𝜃𝑇 𝐺 ⋅ 𝛻𝐺𝜃𝑇

෨𝜃𝑇 is independent of the data 𝐺 and ෨𝜃𝑇−1

Nichol, Alex, Joshua Achiam, and John Schulman. "On first-order meta-learning algorithms."

H. K. Kim. SNU

Adversarial Attacks on Graph Neural Networks via Meta Learning

 Adversarial Attack + Meta Learning (Approx.) + Self-Training
 To change edges based on the gradient

(1) Flip the sign for connected node pairs as this yields the gradient for a change in the
negative direction.

(2) Select most effective one edge from 𝑆 and change it.

11

𝑆 𝑢, 𝑣 = 𝛻𝑎𝑢𝑣
𝑚𝑒𝑡𝑎 −2 ⋅ 𝑎𝑢𝑣 + 1

𝐴 =
0 1 0
1 0 1
0 1 0

𝛻𝑎𝑢𝑣
𝑚𝑒𝑡𝑎 =

0 −0.3 0.2
−0.3 0 0.1
0.2 0.1 0

𝑆 𝑢, 𝑣 =
0 0.3 0.2
0.3 0 −0.1
0.2 −0.1 0

𝑒′ = arg max
𝑒= 𝑢,𝑣 ∶ 𝑀 𝐴,𝑒 ∈Φ(𝐺)

𝑆(𝑢, 𝑣)

H. K. Kim. SNU

Number of
classes

Adversarial Attacks on Graph Neural Networks via Meta Learning

 Experiments
 Datesets

 CORA-ML : scientific publications

 CITESEER : scientific publications

 POLBLOGS : weblogs on US politics

 Datasets Split
 labeled (10%) / unlabeled (90%) nodes

 Networks
 Graph Convolutional Networks (GCN) : 2-Layer + ReLU

 Column Networks (CLN)

 Details
 Repeat all of our attacks on five different splits.

 train all target classifiers ten times per attack.

 the uncertainty indicates 95 % confidence intervals.

12

Number of
Nodes

Number of
Edges

Dimension of
Features

H. K. Kim. SNU

Adversarial Attacks on Graph Neural Networks via Meta Learning

 Results
 Meta-Train (Meta + λ=1)

 Meta-Self (Meta + λ=0)

 A-Meta-Train (Approx. Meta + λ=1)

 A-Meta-Both (Approx. Meta + λ=0.5)

 A-Meta-Self (Approx. Meta + λ=0)

13

𝛻𝐺
𝑚𝑒𝑡𝑎 =෍

𝑡=1

𝑇

𝜆𝛻𝐺𝐿𝑡𝑟𝑎𝑖𝑛 𝑓෩𝜃𝑡 𝐺 + (1 − 𝜆)𝛻𝐺𝐿𝑠𝑒𝑙𝑓 𝑓෩𝜃𝑡 𝐺

H. K. Kim. SNU

Adversarial Attacks on Graph Neural Networks via Meta Learning

 Results
 Change in Error rate

14

3.7%p Error Increase5.9%p Error Increase

H. K. Kim. SNU

Adversarial Attacks on Graph Neural Networks via Meta Learning

 Results
 Change in accuracy for the number of perturbations

 Meta-Self shows the best performance.

15

85%

50% (Useless)

H. K. Kim. SNU

Adversarial Attacks on Graph Neural Networks via Meta Learning

 Results
 Impact of graph structure and trained weights.

 For all three measures no clear distinction can be made.

16

(*) 𝐶𝐸 : the edge betweenness centrality
(= the number of the shortest paths that go through an edge in a graph or network)

H. K. Kim. SNU

Adversarial Attacks on Graph Neural Networks via Meta Learning

 Results (Personal Curiosity)
 Visualization of edges. (citeseer, only effected nodes – 71/2110)

 No removed edges!!! = Only created edges.

 Effected nodes(71) are not only from training nodes(52).

17

AfterBefore

H. K. Kim. SNU

Adversarial Attacks on Graph Neural Networks via Meta Learning

 Conclusion
 Use meta-gradients to solve the bi-level optimization problem underlying the challenging

class of poisoning adversarial attacks.

 Show that attacks created using our meta-gradient approach consistently lead to a strong
decrease in classification performance of graph convolutional models.

 Check small statistical differences of adversarial and ‘normal’ edges.

18

H. K. Kim. SNU

Adversarial Attacks on Graph Neural Networks via Meta Learning

19

Adversarial Attacks on
Graph Neural Networks via Meta Learning
(Appendix)

Hoki Kim

Seoul National University

20

H. K. Kim. SNU

Adversarial Attacks on Graph Neural Networks via Meta Learning

 Unnoticeability constraint on the degree distribution

 Check node degree distributions of ෠𝐺, 𝐺 stem from the same distribution

21

Zügner, et al. "Adversarial attacks on neural networks for graph data." 2018.

𝐷𝐺 = {𝑑𝑣
𝐺|𝑣 ∈ 𝑉, 𝑑𝑣

𝐺 ≥ 𝑑𝑚𝑖𝑛}

𝛼𝐺 = 1 + 𝐷𝐺 ⋅ ෍

𝑑𝑖∈𝐷𝐺

𝑙𝑜𝑔
𝑑𝑖

𝑑𝑚𝑖𝑛 −
1
2

−1

𝑙 𝐷𝑥 = 𝐷𝑥 ⋅ 𝑙𝑜𝑔 𝛼𝑥 + 𝐷𝑥 ⋅ 𝛼 ⋅ 𝑙𝑜𝑔 𝑑𝑚𝑖𝑛 + 𝛼𝑥 + 1 ෍

𝑑𝑖∈𝐷𝑥

𝑙𝑜𝑔 𝑑𝑖

𝑙 𝐻0 = 𝑙 𝐷𝐺 ∪ 𝐷 ෠𝐺 , 𝑙 𝐻1 = 𝑙 𝐷𝐺 + 𝑙(𝐷 ෠𝐺)

Λ 𝐺, ෠𝐺 = −2𝑙 𝐻0 + 2𝑙 𝐻1 ~ 𝜒2

𝑑𝑚𝑖𝑛 = 2 (in code)

𝐻0 : Null hypotheses (=Come from the same power law distribution)

𝑫𝒆𝒇)

𝑳𝒊𝒌𝒆𝒍𝒊𝒉𝒐𝒐𝒅 𝒓𝒂𝒕𝒊𝒐 𝒕𝒆𝒔𝒕)

H. K. Kim. SNU

Adversarial Attacks on Graph Neural Networks via Meta Learning

 Algorithm
 Meta Learning v.s. Approximate Meta Learning

22

H. K. Kim. SNU

Adversarial Attacks on Graph Neural Networks via Meta Learning

 Column Network
 Consider edge information of graph as linking hidden features.

23

Pham, Trang, et al. "Column networks for collective classification." Thirty-First AAAI Conference on Artificial Intelligence. 2017.

𝑁(𝑖) : the set of all neighbors of 𝑖-th node 𝑒𝑖 .
𝑁𝑟(𝑖) : 𝑁 𝑖 = ∪𝑟∈R 𝑁𝑟 𝑖 for relation 𝑟.

𝑔 : activation function.
𝑧 : pre-defined constant to prevent the sum of parameterized
contexts from growing too large for complex relations.

𝑊,𝑉 : weight matrices.
𝐵 : bias.

Adversarial Attacks on
Graph Neural Networks via Meta Learning
(Code & Results)

Hoki Kim

Seoul National University

24

H. K. Kim. SNU

Adversarial Attacks on Graph Neural Networks via Meta Learning

 Code URL https://github.com/Harry24k/gnn-meta-attack

 Code Information
 이미 다양한 Reproduce 존재

 https://github.com/danielzuegner/gnn-meta-attack (Official, Tensorflow)

 https://github.com/ChandlerBang/pytorch-gnn-meta-attack (Pytorch)

 https://github.com/Kaushalya/gnn-meta-attack-pytorch (Pytorch)

 위 목록 중 개인적으로 가장 깔끔하다고 판단되는 두 번째 코드를 기반으로 재구현

25

https://github.com/Harry24k/gnn-meta-attack

H. K. Kim. SNU

Adversarial Attacks on Graph Neural Networks via Meta Learning

 Code Manual : Module
 Loader.py : 데이터로드관련모듈

 Models.py : 모델구조모듈

 Train.py : 학습관련모듈

 Metaattack.py : 공격모듈

 Poison.py : Metaattack 기반 Perturbed Data 생성모듈

 Main.py : 실행모듈

26

H. K. Kim. SNU

Adversarial Attacks on Graph Neural Networks via Meta Learning

 Code Manual : Loader.py
 기존코드에서 Torch로불러오기
쉽도록오른쪽과같이 load_data
재구현

 Random_state를통해
reproducing하기쉽도록구현

 동시에기존과달리 train, test의
과정에서각각 test, train label에
접근하지못하게끔 label을수정
하여 return하도록함.

 Ex) Train Data 반환시 Test Data의
Index에해당하는 Label은 -1로변환
한뒤반환.

27

H. K. Kim. SNU

Adversarial Attacks on Graph Neural Networks via Meta Learning

 Code Manual : Models.py
 기존코드에서 Adjacency Matrix
를 Model에입력하기전에
Laplacian Filtering을적용한후
입력했던것을, Model 안에삽입
하여 Forward 시원래 Adjacency
Matrix를넣을수있도록함.

 불필요한파라미터(Use ReLU,
Use Dropout 등) 제거를통해
Model 단순화

28

H. K. Kim. SNU

Adversarial Attacks on Graph Neural Networks via Meta Learning

 Code Manual : Train.py
 Loader의변경에맞게수정.

 -1의 label 처리를위해 select_index
구현

 Train과 get_acc 함수정의를통
해, 학습과검증분리

29

H. K. Kim. SNU

Adversarial Attacks on Graph Neural Networks via Meta Learning

 Code Manual : Metaattack.py
 기존구조는 Model과자동적으로호환되지않음

 Dictionary를활용한 Meta Gradient 계산 → Model 구조가고정되어있음

30

H. K. Kim. SNU

Adversarial Attacks on Graph Neural Networks via Meta Learning

 Code Manual : Metaattack.py
 따라서외부패키지(Higher)를사용하여해당부분재구현

31

(1) Train model

(2) Get Meta Gradient

𝜃𝑇 = 𝜃𝑇−1−𝛼 𝛻𝜃𝑇−1 𝐿𝑡𝑟𝑎𝑖𝑛 𝑓𝜃𝑇−1 𝐺

𝛻𝐺
𝑚𝑒𝑡𝑎 = 𝛻𝐺𝐿𝑎𝑡𝑘 𝑓𝜃𝑇 𝐺

H. K. Kim. SNU

Adversarial Attacks on Graph Neural Networks via Meta Learning

 Code Manual : Main.py, Poison.py
 User가 Reproducing하기쉽도록이전모듈들을기반으로설계함

 추가적으로공격후의데이터를저장하여나중에검증하기쉽게수정

32

H. K. Kim. SNU

Adversarial Attacks on Graph Neural Networks via Meta Learning

 Results : Cora_ml
 GPU Memory의한계로인해, Meta Learning의 training iterations T를기존 100보다작
은 15로수정함.

 그결과약간의성능차이가존재하나, 비슷한경향을얻을수있었음.

33

정확도 28% 하락

H. K. Kim. SNU

Adversarial Attacks on Graph Neural Networks via Meta Learning

 Results : Citeseer
 GPU Memory의한계로인해, Meta Learning의 training iterations T를기존 100보다작
은 15로수정함.

 그결과약간의성능차이가존재하나, 비슷한경향을얻을수있었음.

34

정확도 9% 하락

H. K. Kim. SNU

Adversarial Attacks on Graph Neural Networks via Meta Learning

 Results : Polblogs
 GPU Memory의한계로인해, Meta Learning의 training iterations T를기존 100보다작
은 15로수정함.

 그결과약간의성능차이가존재하나, 비슷한경향을얻을수있었음.

35

정확도 19% 하락

H. K. Kim. SNU

Adversarial Attacks on Graph Neural Networks via Meta Learning

 Results : Visualization
 더나아가, Edge의변화를관측하기위해 Visualization 실행

 생긴 Edge들이훨씬많음을육안으로관찰가능

36

H. K. Kim. SNU

Adversarial Attacks on Graph Neural Networks via Meta Learning

 Results : Statistical Analysis
 논문에서는알수없었던 Node, Edge의통계적변화관찰

 cora_ml → cora_ml_both_5

 Edges : 오직생성을통해공격
 Deleted Edges: 0

 Created Edges: 798

 Nodes : Train, Test 할것없이모두영향받음
 Effected Train Nodes: 282

 Effected Test Nodes: 202

 다른데이터셋에서도비슷한경향관측
 Citeseer

 Deleted Edges가 0은아니나 Created Edge가훨씬많음

 마찬가지로 Train, Test 할것없이모두영향받음

37

