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Introduction

» GCNs(Representation Learning on Graphs)
» Why GCNs showed promising results in many tasks?
» Why most SOTA GCN models no deeper than 3 or 4 layers?

* How to make GCNs deeper?
= Residual Learning for GCNSs.
= Dense connections in GCNSs.
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Representation Learning on Graphs

» GCNs(Graph Convolutional Networks)
» GCNs have been gaining a lot of momentum in the last few years.

= Two main factors
» Increasing proliferation of non-Euclidean data in real-world applications

= Limited performance of CNNs when dealing with such data
= CNN: Image, Video
» GCNs: Social graphs, biological data
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Most SOTA GCN models no deeper than 3 or 4 layers

= Why?
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Why GCNs are limited to shallow structures?

» GCNs(Graph Convolutional Networks)
= Over-fitting
» Over-smoothing
» Vanishing gradient
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Figures from https://towardsdatascience.com/the-vanishing-gradient-problem-69bf08b15484
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Vanishing Gradient Problem

» Vanishing Gradient Problem
» Training loss for GCNs with 7, 14, 28 and 56 layers, with and without residual connections.
» Adding more layers without residual connections translates to substantially higher loss.
» Introduce skip connections, the network converges with no problems.

Deeper GCNs don’t converge well. Even a 112-layer deep GCN converges well!!!
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Residual Learning for GCNs

Residual Learning

* Inspired by ResNet(He et al. CVPR 2016)
= A graph residual learning framework

X

Y

weight layer
= Skip connection. F(x) [ relu N
» Adding the input features to the output features. weight layer identity
» The deep network converges with no problems. )
. . X)+ X
» Learns an underlying mapping H by relu
fitting another mapping F Figure 2. Residual learning: a building block.
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Dense connections 1n GCNs

* Inspired by DenseNet(Huang et al. CVPR 2017)

» Improves information flow in the network.
= Enables efficient reuse of features among layers.

» Dense connectivity among layers.
= T is vertex-wise concatenation function.
" g;+1consists of all the GCN transitions from
previous layers.
» Instead of adding input features to the output
features. DenseGCN concatenate them together.
* Dimension of each vertex feature of Gi+1is Do+ D x (1 +1).

gl—l-l —_ H(gh WE)
= T(F(Gi, W), G1)
= T(F(Gi, W), ..., F(Go, Ws), Go).
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Dense connections

Figure 1: A 5-layer dense block with a growth rate of k£ = 4.
Each layer takes all preceding feature-maps as input.
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Dilated Aggregation in GCNs

» Dilated convolutions
» Increase the receptive field without losing resolution.
» Stacking layers with different dilation rates and works very well for CNNSs.
» Especially using in semantic segmentation

» To alleviate spatial information loss caused by pooling operation.
* For GCNSs, simply dilate the convolution by skipping neighbors.
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Experiments

» S3DIS Semantic Segmentation

Tairen Piao. SNU

Ground Truth PlainGCN-28 ResGCN-28 DenseGCN-28

Table [ Sofa Bookease  Bourd

Figure 4. Qualitative Results on S3DIS Semantic Segmentation. We show here the effect of adding residual and dense graph connections
to deep GCNs. PlainGCN-28, ResGCN-28, and DenseGCN-28 are identical except for the presence of residual graph connections in
ResGCN-28 and dense graph connections in DenseGCN-28. We note how both residual and dense graph connections have a substantial
effect on hard classes like board, bookcase, and sofa. These are lost in the results of PlainGCN-28.
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Experiments

» S3DIS Semantic Segmentation

Method OA mlOU | ceiling floor wall beam column window door table chair sofa bookcase board clutter
PointNet [27] 78.5 476 88.0 88.7 693 424 23.1 47.5 516 541 420 96 38.2 294 35.2
MS+CU [#] 792 478 886 958 673 369 249 48.6 523 519 451 10.6 36.8 24.7 37.5
G+RCU [¢] 81.1  49.7 903 9211 679 4.7 242 523 512 58.1 474 69 39.0 30.0 41.9
PointNet++ [29] - 532 90.2 917 731 427 21.2 49.7 423 627 590 19.6 45.8 48.2 45.6
3DRNN+CF [19] 869 563 929 938 73.1 425 259 47.6 592 604 66.7 248 57.0 36.7 51.6
DGCNN [42] 84.1 56.1 - - - - - - - - - - - - -
ResGCN-28 (Ours) 859  60.0 93.1 953 782 339 37.4 56.1 682 649 61.0 34.6 51.5 51.1 54.4

Table 2. Comparison of ResGCN-28 with state-of-the-art on S3DIS Semantic Segmentation. We report average per-class results across
all areas for our reference model ResGCN-28, which has 28 GCN layers, residual graph connections, and dilated graph convolutions, and
state-of-the-art baselines. ResGCN-28 outperforms state-of-the-art by almost 4%. It also outperforms all baselines in 9 out of 13 classes.
The metrics shown are overall point accuracy (OA) and mean IoU (mloU). ’-’ denotes not reported and bold denotes best performance.
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Conclusion

* GCN(Graph Convolution Network)

* GCNs showed promising results in many tasks
* Non-Euclidean data.

* Most SOTA GCN models no deeper than 3 or 4 layers
= Qver-fitting, over-smoothing and vanishing gradient.

* How to make GCNs deeper?
= Residual skip connections.
= Dense skip connections.
= Dilated graph convolutions.

* EXperiments
» S3DIS Semantic Segmentation.

Tairen Piao. SNU
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Reproduction of the Paper’s Method

PIAO TAIREN(EHEf 2
Seoul National University
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Code Link

» Code Link of Paper Reproduction
= https://github.com/ptrandpxg/PIAO TAIREN GCN Final DeepGCNs

= Referenced the original code

* Modification
* | modified the usage guideline to make the code easy to understand.

= | fixed some bugs of original code
= Data directory and configuration.
= Original code has some bugs for running.
= E.g.: train.py line 96

is_best, './checkpoints', opt.postname) # Flwed Bu
a3 — 2 ¥

* |t IS easy to run the code to follow the usage guideline.

Tairen Piao. SNU
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https://github.com/ptrandpxq/PIAO_TAIREN_GCN_Final_DeepGCNs
https://github.com/lightaime/deep_gcns_torch

Code Explanations

= Code Architecture

= gcn_impl
» PyTorch implementation of GCN library.

» Implementation of GCNs and Layers
= Node, Edge,Resconv2D, MLP

" sem_seg
» S3DIS Semantic segmentation task

= utils

= Basic module implementation of DeepGCN

» Implementation of the task
= Architectures, train.py, and configurations.
» | put a pre-trained model in it.

» |oss, optimizer, checkpoint and dataloader.

" images
» Guideline images

Tairen Piao. SNU

ptrandpxq Fix typo

gen_impl
images
sem_seg
utils
[ .gitattributes
[ .gitignore
[ LICENSE
(3 README.md

[ deepgenyml

Change file name
fix git bug

Fix typo

Upload code
Initial commit
Initial commit
Initial commit

Fix typo

Upload code
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Experiment 1

= Train the ResGCN-28 from scratch

(deepgcn) piaotairen@warhol?:~/PIAO_TAIREN_GCN_Final_DeepGCNs/sem_seg$ CUDA_VISIBLE_DEVICES=@,1,2,3 python train.py --phase train --multi_gpus --batch_size 16

» Configurations

2020-06-16 02:39:46,152 k:16

2020-06-16 02:39:46,152 block:res

2020-06-16 :39:46,153 conv:edge

2020-06-16 146,153 act:relu

2020-06-16 02:39:46,153 norm:batch

2020-06-16 02:39:46,153 bias:True

2020-06-16 02:39:46,153 n_filters:64

2020-06-16 02:392:46,153 n_blocks:28

2020-06-16 146,153 dropout:0.3

2020-06-16 :39:46,153 epsilon:0.2

2020-06-16 02:39:46,153 stochastic:True

2020-06-16 02:39:46,154 device:cuda

2020-06-16 02:39:46,154 jobname:sem_seg-res-edge-n28-(64-k16-drop@.3-1rd.001_B16

2020-06-16 146,154 exp_dir:./log/sem_seg-res-edge-n28-(64-k16-drop@.3-1r@.001_B16_20200616-023946_2870cdbl-2bc3-4dc2-aace-009d289dbfla
2020-06-16 02:39:46,154 ckpt_dir:./log/sem_seg-res-edge-n28-C64-k16-drop@.3-1r@.001_B16_20200616-023946_2870cd61-2bc3-4dc2-aace-009d289dbfla/checkpoint
2020-06-16 02:39:46,154 code_dir:./log/sem_seg-res-edge-n28-C64-k16-drop@.3-1r@.001_B16_20200616-023946_2870cd6l-2bc3-4dc2-aace-009d289dbfla/code

2020-06-16 02:39:46,154 logger:<utils.tf_logger.TflLogger object at Ox7f605c928b90>
2020-06-16 02:39:46,154 epoch:-1

2020-06-16 146,155 step:-1

2020-06-16 :39:46,155 loglevel:info

2020-06-16 :39:46,155 ===== — args END

2020-06-16 02:39:46,155

2020-06-16 :39:46,155 ===> Phase is train.
2020-06-16 :39:46,155 > Creating dataloader ...
2020-06-16 02:39:48,028 > Loading the network ...

2020-06-16 ©2:39:52,029 > Init the optimizer ...
2020-06-16 02:39:52,030 > Init Metric ...
2020-06-16 02:39:52,030 ===> start training ...
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Experiment 1

* Training Process

2020-06-16 12:11:19,035
2020-06-16 12:17:19,584
2020-06-16 12:23:17,526
2020-00-16 12:29:18,316
2020-06-16 12:35:15,197
2020-00-16 12:41:15,251
2020-06-16 12:47:16,678
2020-00-16 12:53:16,545
2020-06-16 12:59:15,711
2020-00-16 13:05:17,488
2020-06-16 13:11:14,538
2020-060-16 13:17:11,034
2020-06-16 13:23:08,951
2020-06-16 13:29:@5,821
2020-06-16 13:35:04,323
2020-06-16 13:40:59,960
2020-06-16 13:46:59,414

* Checkpoints

[186/1046]
[286/1046]
[386/1046]
[486/1046]
[586/1046]
[686/1046]
[786/1046]
[886/1046]
[986/1046]
1 10500 [40/1046]
1 10600 [140/1046]
: 10700 [240/1046]
: 10800 [340/1046]
1 10900 [440/1046]
1 11000 [540/1046]
1 11100 [640/1046]
¢ 11200 [740/1046]
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with different epochs

piaotairen@warhol7:~/PIAO_TAIREN_GCN_Final_DeepGCNs/sem_seg/checkpoints$ 1s
_ckpt_0.pth _ckpt_12.pth _ckpt_15.pth _ckpt_18.pth _ckpt_26.pth _ckpt_d.pth _ckpt_7.pth

_chpt_108.pth _ckpt_13.pth _ckpt_16.pth _ckpt_19.pth _ckpt_2.pth _ckpt_5.pth _ckpt_8.pth
_chpt_11.pth _ckpt_1d.pth _ckpt_17.pth _ckpt_1.pth _chkpt_3.pth _ckpt_6.pth _ckpt_9.pth
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Experiment 2

» Results of the Paper (S3DIS)

ResGCN-28 (Ours) 859  60.0 ‘ 93.1 95.3 782 339 374 56.1 682 649 610 34.6 51.5 51.1 54.4

» Results of Reproduction

than the results of original paper.
= But still got 52.1 mIOU score.
= |t means DeepGCNs

| 429/429 [22:58<00:00, 3.21s/it]

2020-06-13 20:59:28,263 mIOU for class
2020-06-13 20:59:28,263 mIOU for class
2020-06-13 20:59:28,263 mIOU for class
2020-06-13 20:59:28,264 mIOU for class
2020-06-13 20:59:28,264 ===> mIOU for class
2020-06-13 20:59:28,264 ===> mIOU for class
2020-06-13 20:59:28,264 ===> mIOU for class

.9141031338851212
.9786018258173942

. 7825446554380999
.002212208111429742
.11082248741742687
.5196485669650027
.33613085324760833
2020-06-13 20:59:28,264 ===> mIOU for class .6919200945104299

2020-06-13 20:59:28,264 ===> mIOU for class .7069462200823043

2020-06-13 20:59:28,265 ===> mIOU for class .15910367291924@7

2020-06-13 20:59:28,265 ===> mIOU for class 1@ 0.550492369676535

2020-06-13 20:59:28,265 ===> mIOU for class 11: @.5177829857042419

2020-06-13 20:59:28,265 ===> mIOU for class 12: 0.5044259589367615

2020-06-13 20:59:28,265 ===> mIOU is ©.5211334640547383

(deepgcn) piaotairen@warhol?:~/PIAO_TAIREN_GCN_Final_DeepGCNs/examples/sem_seg_dense$

KDDO\JO'SLH-P-U)NI—‘@
SS IS IS BRI S RS BRGSO IS IS
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Details about the Code

* | wrote some usage guidelines for my code on the repository.
* |t is easy to run my code by following the instructions.
» Please check the sem_seqg directory for more details about the code.

# Requirements

There are many package version requirements, so please install a new conda enviroment to run the code.

Install enviroment by runing:

conda env create -f deepgcn.yml
source activate deepgcn

Code Architecture

How to train, test and evaluate the models

Important!!!

Please look the details in ReapMe.md of sem_seg folder. All the information of code, data, and pretrained models can be found
there.
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https://github.com/ptrandpxq/PIAO_TAIREN_GCN_Final_DeepGCNs

Summary

* | learned much insight into GCN through this course. Its really helped.

» | presented the [paper] about how to train the DeepGCNSs by tackle the over-
smoothing, vanishing gradient, and over-fitting problems on DeepGCNs.

* | reproduced the paper’s code and uploaded it to my GitHub repository.
» Thank you for listening to my presentation and look at my materials.

* |f you are interested in this paper, please run the code and check the results of
DeepGCNs.

* Thank you again!
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