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Introduction

GCNs(Representation Learning on Graphs)
 Why GCNs showed promising results in many tasks?

 Why most SOTA GCN models no deeper than 3 or 4 layers?

How to make GCNs deeper?
 Residual Learning for GCNs.

 Dense connections in GCNs.

 Dilated Aggregation in GCNs.

Experiments

 S3DIS Semantic Segmentation.
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Representation Learning on Graphs

 GCNs(Graph Convolutional Networks)

 GCNs have been gaining a lot of momentum in the last few years.

 Two main factors 
 Increasing proliferation of non-Euclidean data in real-world applications

 Limited performance of CNNs when dealing with such data

 CNN: Image, Video

 GCNs: Social graphs, biological data
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Most SOTA GCN models no deeper than 3 or 4 layers

 Why?
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Why GCNs are limited to shallow structures?

 GCNs(Graph Convolutional Networks)

 Over-fitting

 Over-smoothing

 Vanishing gradient
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Over-fitting Over-smoothing Vanishing Gradient

Figures from https://towardsdatascience.com/the-vanishing-gradient-problem-69bf08b15484

https://towardsdatascience.com/the-vanishing-gradient-problem-69bf08b15484
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Vanishing Gradient Problem

 Vanishing Gradient Problem
 Training loss for GCNs with 7, 14, 28 and 56 layers, with and without residual connections.

 Adding more layers without residual connections translates to substantially higher loss.

 Introduce skip connections, the network converges with no problems.

PlainGCNs ResGCNs

Deeper GCNs don’t converge well. Even a 112-layer deep GCN converges well!!!
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Residual Learning for GCNs

 Inspired by ResNet(He et al. CVPR 2016)

 A graph residual learning framework
 Skip connection.

 Adding the input features to the output features.

 The deep network converges with no problems.

 Learns an underlying mapping H by 

fitting another mapping F

 ResGCN

Residual Learning
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Dense connections in GCNs

 Inspired by DenseNet(Huang et al. CVPR 2017)
 Improves information flow in the network.

 Enables efficient reuse of features among layers.

 Dense connectivity among layers.
 T is vertex-wise concatenation function.

 𝑔𝑙+1consists of all the GCN transitions from 

previous layers.

 Instead of adding input features to the output 

features. DenseGCN concatenate them together.

 Dimension of each vertex feature of 

Dense connections
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Dilated Aggregation in GCNs

 Dilated convolutions 
 Increase the receptive field without losing resolution.

 Stacking layers with different dilation rates and works very well for CNNs.

 Especially using in semantic segmentation

 To alleviate spatial information loss caused by pooling operation.

 For GCNs, simply dilate the convolution by skipping neighbors.

Dilated aggregation

9



Tairen Piao. SNU

Experiments

S3DIS Semantic Segmentation
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Experiments

S3DIS Semantic Segmentation
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Conclusion
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GCN(Graph Convolution Network)
 GCNs showed promising results in many tasks

 Non-Euclidean data.

 Most SOTA GCN models no deeper than 3 or 4 layers
 Over-fitting, over-smoothing and vanishing gradient.

How to make GCNs deeper?
 Residual skip connections.

 Dense skip connections.

 Dilated graph convolutions.

Experiments
 S3DIS Semantic Segmentation.



Reproduction of the Paper’s Method

PIAO TAIREN(박태임)

Seoul National University

13



Tairen Piao. SNU

Code Link
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Code Link of Paper Reproduction 
 https://github.com/ptrandpxq/PIAO_TAIREN_GCN_Final_DeepGCNs

 Referenced the original code

Modification
 I modified the usage guideline to make the code easy to understand.

 I fixed some bugs of original code 
 Data directory and configuration.

 Original code has some bugs for running.

 E.g.: train.py line 96

 It is easy to run the code to follow the usage guideline.

https://github.com/ptrandpxq/PIAO_TAIREN_GCN_Final_DeepGCNs
https://github.com/lightaime/deep_gcns_torch
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Code Explanations
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Code Architecture
 gcn_impl

 PyTorch implementation of GCN library.
 Implementation of GCNs and Layers

 Node, Edge,Resconv2D, MLP

 sem_seg
 S3DIS Semantic segmentation task

 Implementation of the task

 Architectures, train.py, and configurations.

 I put a pre-trained model in it.

 utils
 Basic module implementation of DeepGCN

 loss, optimizer, checkpoint and dataloader.

 images 
 Guideline images
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Experiment 1 Training ResGCN-28 from Scratch
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 Train the ResGCN-28 from scratch

Configurations
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Experiment 1 Training ResGCN-28 from Scratch
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 Training Process

Checkpoints 
 Trained model with different epochs
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Experiment 2 S3DIS Semantic Segmentation
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Results of the Paper (S3DIS)

Results of Reproduction
 Slightly lower than the results of original paper.

 But still got 52.1 mIOU score.

 It means DeepGCNs well trained.
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Details about the Code
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 I wrote some usage guidelines for my code on the repository.
 It is easy to run my code by following the instructions.

 Please check the sem_seg directory for more details about the code.

https://github.com/ptrandpxq/PIAO_TAIREN_GCN_Final_DeepGCNs
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Summary
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 I learned much insight into GCN through this course. Its really helped.

 I presented the [paper] about how to train the DeepGCNs by tackle the over-
smoothing, vanishing gradient, and over-fitting problems on DeepGCNs.

 I reproduced the paper’s code and uploaded it to my GitHub repository.

 Thank you for listening to my presentation and look at my materials.

 If you are interested in this paper, please run the code and check the results of 
DeepGCNs.

 Thank you again!

https://arxiv.org/pdf/1904.03751.pdf
https://github.com/ptrandpxq/PIAO_TAIREN_GCN_Final_DeepGCNs

