
Efficient Graph Generation with
Graph Recurrent Attention Networks
In NeurIPS 2019

Seonguk Seo

2018-20721

Seoul National University

1

Existing Work

 Graph RNN [You18]

 It models graph generation as a sequential process, which accommodate complex

dependencies between generated edges.

 O(N2) for the best model (not scalable).

 It has significant bottlenecks in handling long-term dependencies, and the results

depend on node orderings.

2

[You18] Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton, and Jure Leskovec. Graphrnn: Generating realistic
graphs with deep auto-regressive models. In ICML 2018

Contributions

 Their model consists of O(N) auto-regressive generation steps.

 Compared to RNN-based model, they propose an attention-based GNN that

better utilizes the topology of the already generated graphs.

 They approximate the likelihood by marginalizing over a family of canonical

node orderings.

3

Representation of Graphs

 Model the distribution of undirected graph 𝐺 = 𝑉, 𝐸 :

𝑃 𝐺 =෍

𝜋

𝑃 𝐺, 𝜋 =෍

𝜋

𝑃(𝐴𝜋) =෍

𝜋

𝑃(𝐿𝜋)

where 𝜋 denotes a node ordering, 𝐴𝜋 is an adjacency matrix and 𝐿𝜋 denotes a
lower triangular part of 𝐴𝜋.

4

Representation of Generation Process

 They generate one block of B rows of 𝐿𝜋 for each time step in one pass

conditioned on the already generated graphs.

 By increasing the block size and the stride of generation, they can trade-off

model expressiveness for speed.

5

Graph Recurrent Attention Networks (GRAN)

6

Graph Recurrent Attention Networks (GRAN)

7

 RNNs are standard neural networks for handling this sequential dependency

structures.

 It may cause long-term bottleneck on graph topology.

 Thus they use GNNs to make generation decisions depend on the graph structure.

 They do not carry hidden states of GNNs from one generation step to the next,

which enables parallel training.

 This is more efficient than typical auto-regressive models.

Graph Recurrent Attention Networks (GRAN)

 Initial Node Representation

 Message Passing

 Output Distribution

8

Graph Recurrent Attention Networks (GRAN)

9

 They first compute the initial node representations of the already-generated
graph via a linear mapping

 For current block,

 In practice, computing alone at tth generation step is enough, because
can be cached from previous steps, which reduces computation.

Node Representation

10

Graph Neural Network with Attentive Message Passing

 From the initial node representation, all edges associated with the current block
are generated using a GNN.

 The rth round of message passing is

11

Output Distribution

 After R round message passing, they obtain the final node representation vector,
and then model the probability of generating edges in the current block via a
mixture of Bernoulli distributions.

12

Approximated Likelihood

 They aim to maximize a lower bound:

where the size Q achieve a tradeoff between tightness of the bound (usually
correlated with better model quality) and computational cost.

 Variational Interpretation

 They adopts DFS, BFS, k-core and degree descent ordering.

13

𝑃 𝐺 =෍

𝜋

𝑃 𝐺, 𝜋 =෍

𝜋

𝑃(𝐴𝜋) =෍

𝜋

𝑃(𝐿𝜋)

Experiments

 Dataset
 Grid : 100 standard 2D grid graphs with 100 < |V| < 400

 Protein : 918 protein graphs with 100 < |V| < 500

 Point Cloud : 41 simulated 3D point clouds with |V|avg >= 1k

 64% train split, 16% valid split, 20% test split

14

Evaluation Metrics

 Compare the distributions of graph statistics between the generated and
ground-truth graphs, by computing the maximum mean discrepancy (MMD) over
the following 4 statistics.

15

1. Degree distributions

2. Clustering coefficient distributions

3. The number of occurrences of all orbits with 4 nodes

4. Spectra of the graphs (the eigenvalues of normalized graph Laplacian)

Results

 For all metrics, lower value is preferred.

16

Visualization

 Sample graphs generated by GRAN with its comparison.

17

Ablation: Efficiency vs Sample Quality

 The main limiting factor for graph generation speed is the number of generation
steps T, which is related to the block size B.

 If B grows, which can improve speed, the model quality may suffer.

 They propose “stride sampling”, where neighboring blocks have an overlap

18

Block

Block

Block

Block

Block

Block

Block

Block

Code Review

 B : batch size, C : number of orderings, K : block size, E : number of edges
N : number of rows (nodes) of adjacency matrix

 A : adjacency matrix (B * C * N * N)

 att_idx : indicator of newly generated nodes (N * 1)

 edges : list of edges [incoming / outgoing node index] (E * 2)

 Repository link : https://github.com/skynbe/GRAN

19

https://github.com/skynbe/GRAN

Code Review – Node Embedding

20

Caching node embeddings

From ii to ii+K : node

orderings of current block

self.decoder_input :

Set node embeddings of

current block to 0

Code Review – Attentive Message Passing

21

Translating adjacency matrix to

list of edges (for computation)

att_idx : indicator x

self.decoder :

message passing GNN

Code Review – Attentive Message Passing

22

Compute message

Compute attention

Aggregate message

State update by GRU

Code Review – Output Distribution

23

Get mixture of Bernoulli distribution

Get output alpha and theta

Reproducing Results

 Trained, validated and tested on Grid Dataset

 Validation MMD scores :
 degree 1.73e-3, clustering 3.51e-4, orbits 1.92e-3, spectral 2.41e-2

 Test MMD scores :
 degree 9.36e-3, clustering 3.50e-4, orbits 1.63e-3, spectral 1.33e-2

• Github link : https://github.com/lrjconan/GRAN

24

https://github.com/lrjconan/GRAN

