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 Adversarial Attacks
 Degrade performance of a machine learning model
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 Adversarial Attacks
 Training time attack (poisoning) : Modifying few training examples to worsen the 

performance 
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https://towardsdatascience.com/how-to-attack-machine-learning-evasion-poisoning-inference-trojans-backdoors-a7cb5832595c
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 Problem Formulation
 Task : Semi-supervised node classification

 Goal : Generate modified graph ෠𝐺 = ( መ𝐴, 𝑋) from the original graph 𝐺 = (𝐴, 𝑋) to increase the 
misclassification rate of GNN trained with ෠𝐺 .

 Constraints : adversarial attacks should be unnoticeable.
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Limit the number of 

changes on edges
Node becomes disconnected

(i.e. a singleton) during the attack

𝐴 − መ𝐴
0
≤ Δ

Unnoticeability constraint 

on the degree distribution

Node Degree d=2

Check ෠𝐺, 𝐺 are from same distribution
by using likelihood ratio test

𝐴𝑇 = 𝐴 = 0, 1 𝑁×𝑁
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 Problem Formulation
 Task : Semi-supervised node classification

 Goal : Generate modified graph ෠𝐺 = ( መ𝐴, 𝑋) from the original graph 𝐺 = (𝐴, 𝑋) to increase the 
misclassification rate of GNN(𝒇𝜽) trained with ෠𝐺 .

 Constraints 𝜱(𝑮)
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min
෠𝐺∈Φ(𝐺)

𝐿𝑎𝑡𝑘 𝑓𝜃∗ ෠𝐺 = −𝐿𝑡𝑟𝑎𝑖𝑛 𝑓𝜃∗ ෠𝐺

s.t. 𝜃∗ = argmin
𝜃

𝐿𝑡𝑟𝑎𝑖𝑛 𝑓𝜃 ෠𝐺

∗ 𝑳𝒕𝒓𝒂𝒊𝒏 : loss function (e.g. cross-entropy) 
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 Meta Learning
 Train a model on a variety of learning tasks, such that it can solve new learning tasks using 

only a small number of training samples

 Given task distribution 𝑝 𝑇 and it’s corresponding loss function 𝐿𝑇𝑖 ,
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Finn, Chelsea, Pieter Abbeel, and Sergey Levine. "Model-agnostic meta-learning for fast adaptation of deep networks."

min
𝜃

σ𝑇𝑖~𝑝(𝑇)
𝐿𝑇𝑖 𝑓𝜃∗ s.t. 𝜃∗ = argmin

𝜃
𝐿𝑇𝑖 𝑓𝜃
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 Meta Learning
 Given task distribution 𝑝 𝑇 and it’s corresponding loss function 𝐿𝑇𝑖 ,
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min
𝜃

σ𝑇𝑖~𝑝(𝑇)
𝐿𝑇𝑖 𝑓𝜃∗ s.t.       𝜃∗ = argmin

𝜃
𝐿𝑇𝑖 𝑓𝜃

min
෠𝐺∈Φ(𝐺)

𝐿𝑎𝑡𝑘 𝑓𝜃∗ ෠𝐺 s.t. 𝜃∗ = argmin
𝜃

𝐿𝑡𝑟𝑎𝑖𝑛 𝑓𝜃 ෠𝐺

Very similar to each other
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 Adversarial Attack + Meta Learning
 Find an optimal perturbation for dropping the accuracy of the final model.

(1) Train Model

(2) Get Meta Gradient
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𝜃𝑇 = 𝜃𝑇−1−𝛼 𝛻𝜃𝑇−1 𝐿𝑡𝑟𝑎𝑖𝑛 𝑓𝜃𝑇−1 𝐺

𝛻𝐺
𝑚𝑒𝑡𝑎 = 𝛻𝐺𝐿𝑎𝑡𝑘 𝑓𝜃𝑇 𝐺 = 𝛻𝑓𝐿𝑎𝑡𝑘 𝑓𝜃𝑇 𝐺 ⋅ 𝛻𝐺𝑓𝜃𝑇 𝐺 + 𝛻𝜃𝑇𝑓𝜃𝑇 𝐺 ⋅ 𝛻𝐺𝜃𝑇
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 Adversarial Attack + Meta Learning (Approx.) + Self-Training
 For reducing computational complexity,
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≈ 𝛻𝑓𝐿𝑎𝑡𝑘 𝑓෩𝜃𝑇 𝐺 ⋅ 𝛻𝐺𝑓෩𝜃𝑇 𝐺

𝛻𝐺
𝑚𝑒𝑡𝑎 = 𝛻𝐺𝐿𝑎𝑡𝑘 𝑓𝜃𝑇 𝐺 = 𝛻𝑓𝐿𝑎𝑡𝑘 𝑓𝜃𝑇 𝐺 ⋅ 𝛻𝐺𝑓𝜃𝑇 𝐺 + 𝛻𝜃𝑇𝑓𝜃𝑇 𝐺 ⋅ 𝛻𝐺𝜃𝑇

෨𝜃𝑇 is independent of the data 𝐺 and ෨𝜃𝑇−1

Nichol, Alex, Joshua Achiam, and John Schulman. "On first-order meta-learning algorithms."
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 Adversarial Attack + Meta Learning (Approx.) + Self-Training
 To change edges based on the gradient

(1) Flip the sign for connected node pairs as this yields the gradient for a change in the 
negative direction.

(2) Select most effective one edge from 𝑆 and change it.
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𝑆 𝑢, 𝑣 = 𝛻𝑎𝑢𝑣
𝑚𝑒𝑡𝑎 −2 ⋅ 𝑎𝑢𝑣 + 1

𝐴 =
0 1 0
1 0 1
0 1 0

𝛻𝑎𝑢𝑣
𝑚𝑒𝑡𝑎 =

0 −0.3 0.2
−0.3 0 0.1
0.2 0.1 0

𝑆 𝑢, 𝑣 =
0 0.3 0.2
0.3 0 −0.1
0.2 −0.1 0

𝑒′ = arg max
𝑒= 𝑢,𝑣 ∶ 𝑀 𝐴,𝑒 ∈Φ(𝐺)

𝑆(𝑢, 𝑣)
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Number of
classes

Adversarial Attacks on Graph Neural Networks via Meta Learning

 Experiments
 Datesets

 CORA-ML : scientific publications

 CITESEER : scientific publications

 POLBLOGS : weblogs on US politics

 Datasets Split
 labeled (10%) / unlabeled (90%) nodes

 Networks
 Graph Convolutional Networks (GCN) : 2-Layer + ReLU

 Column Networks (CLN)

 Details
 Repeat all of our attacks on five different splits.

 train all target classifiers ten times per attack.

 the uncertainty indicates 95 % confidence intervals.
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Number of
Nodes

Number of
Edges

Dimension of
Features
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 Results
 Meta-Train (Meta + λ=1)

 Meta-Self (Meta + λ=0)

 A-Meta-Train (Approx. Meta + λ=1)

 A-Meta-Both (Approx. Meta + λ=0.5) 

 A-Meta-Self (Approx. Meta + λ=0)
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𝛻𝐺
𝑚𝑒𝑡𝑎 =෍

𝑡=1

𝑇

𝜆𝛻𝐺𝐿𝑡𝑟𝑎𝑖𝑛 𝑓෩𝜃𝑡 𝐺 + (1 − 𝜆)𝛻𝐺𝐿𝑠𝑒𝑙𝑓 𝑓෩𝜃𝑡 𝐺
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 Results
 Change in Error rate
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3.7%p Error Increase5.9%p Error Increase
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 Results
 Change in accuracy for the number of perturbations

 Meta-Self shows the best performance.

15

85%

50% (Useless)
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 Results
 Impact of graph structure and trained weights.

 For all three measures no clear distinction can be made.
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(*) 𝐶𝐸 : the edge betweenness centrality
(= the number of the shortest paths that go through an edge in a graph or network)
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 Results (Personal Curiosity)
 Visualization of edges. (citeseer, only effected nodes – 71/2110)

 No removed edges!!! = Only created edges.

 Effected nodes(71) are not only from training nodes(52).

17

AfterBefore
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 Conclusion
 Use meta-gradients to solve the bi-level optimization problem underlying the challenging 

class of poisoning adversarial attacks.

 Show that attacks created using our meta-gradient approach consistently lead to a strong
decrease in classification performance of graph convolutional models.

 Check small statistical differences of adversarial and ‘normal’ edges.
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 Unnoticeability constraint on the degree distribution

 Check node degree distributions of ෠𝐺, 𝐺 stem from the same distribution

21

Zügner, et al. "Adversarial attacks on neural networks for graph data." 2018.

𝐷𝐺 = {𝑑𝑣
𝐺|𝑣 ∈ 𝑉, 𝑑𝑣

𝐺 ≥ 𝑑𝑚𝑖𝑛}

𝛼𝐺 = 1 + 𝐷𝐺 ⋅ ෍

𝑑𝑖∈𝐷𝐺

𝑙𝑜𝑔
𝑑𝑖

𝑑𝑚𝑖𝑛 −
1
2

−1

𝑙 𝐷𝑥 = 𝐷𝑥 ⋅ 𝑙𝑜𝑔 𝛼𝑥 + 𝐷𝑥 ⋅ 𝛼 ⋅ 𝑙𝑜𝑔 𝑑𝑚𝑖𝑛 + 𝛼𝑥 + 1 ෍

𝑑𝑖∈𝐷𝑥

𝑙𝑜𝑔 𝑑𝑖

𝑙 𝐻0 = 𝑙 𝐷𝐺 ∪ 𝐷 ෠𝐺 , 𝑙 𝐻1 = 𝑙 𝐷𝐺 + 𝑙(𝐷 ෠𝐺)

Λ 𝐺, ෠𝐺 = −2𝑙 𝐻0 + 2𝑙 𝐻1 ~ 𝜒2

𝑑𝑚𝑖𝑛 = 2 (in code)

𝐻0 : Null hypotheses (=Come from the same power law distribution)

𝑫𝒆𝒇)

𝑳𝒊𝒌𝒆𝒍𝒊𝒉𝒐𝒐𝒅 𝒓𝒂𝒕𝒊𝒐 𝒕𝒆𝒔𝒕)
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 Algorithm
 Meta Learning v.s. Approximate Meta Learning

22
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 Column Network
 Consider edge information of graph as linking hidden features.

23

Pham, Trang, et al. "Column networks for collective classification." Thirty-First AAAI Conference on Artificial Intelligence. 2017.

𝑁(𝑖) : the set of all neighbors of 𝑖-th node 𝑒𝑖 .
𝑁𝑟(𝑖) : 𝑁 𝑖 = ∪𝑟∈R 𝑁𝑟 𝑖 for relation 𝑟.

𝑔 : activation function.
𝑧 : pre-defined constant to prevent the sum of parameterized 
contexts from growing too large for complex relations.

𝑊,𝑉 : weight matrices.
𝐵 : bias.
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 Code URL https://github.com/Harry24k/gnn-meta-attack

 Code Information
 이미 다양한 Reproduce 존재

 https://github.com/danielzuegner/gnn-meta-attack (Official, Tensorflow)

 https://github.com/ChandlerBang/pytorch-gnn-meta-attack (Pytorch)

 https://github.com/Kaushalya/gnn-meta-attack-pytorch (Pytorch)

 위 목록 중 개인적으로 가장 깔끔하다고 판단되는 두 번째 코드를 기반으로 재구현

25

https://github.com/Harry24k/gnn-meta-attack
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 Code Manual : Module
 Loader.py : 데이터로드관련모듈

 Models.py : 모델구조모듈

 Train.py : 학습관련모듈

 Metaattack.py : 공격모듈

 Poison.py : Metaattack 기반 Perturbed Data 생성모듈

 Main.py : 실행모듈

26
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 Code Manual : Loader.py
 기존코드에서 Torch로불러오기
쉽도록오른쪽과같이 load_data
재구현

 Random_state를통해
reproducing하기쉽도록구현

 동시에기존과달리 train, test의
과정에서각각 test, train label에
접근하지못하게끔 label을수정
하여 return하도록함.

 Ex) Train Data 반환시 Test Data의
Index에해당하는 Label은 -1로변환
한뒤반환.
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 Code Manual : Models.py
 기존코드에서 Adjacency Matrix
를 Model에입력하기전에
Laplacian Filtering을적용한후
입력했던것을, Model 안에삽입
하여 Forward 시원래 Adjacency 
Matrix를넣을수있도록함.

 불필요한파라미터(Use ReLU, 
Use Dropout 등) 제거를통해
Model 단순화
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 Code Manual : Train.py
 Loader의변경에맞게수정.

 -1의 label 처리를위해 select_index
구현

 Train과 get_acc 함수정의를통
해, 학습과검증분리
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 Code Manual : Metaattack.py
 기존구조는 Model과자동적으로호환되지않음

 Dictionary를활용한 Meta Gradient 계산 → Model 구조가고정되어있음
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 Code Manual : Metaattack.py
 따라서외부패키지(Higher)를사용하여해당부분재구현
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(1) Train model

(2) Get Meta Gradient

𝜃𝑇 = 𝜃𝑇−1−𝛼 𝛻𝜃𝑇−1 𝐿𝑡𝑟𝑎𝑖𝑛 𝑓𝜃𝑇−1 𝐺

𝛻𝐺
𝑚𝑒𝑡𝑎 = 𝛻𝐺𝐿𝑎𝑡𝑘 𝑓𝜃𝑇 𝐺
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 Code Manual : Main.py, Poison.py
 User가 Reproducing하기쉽도록이전모듈들을기반으로설계함

 추가적으로공격후의데이터를저장하여나중에검증하기쉽게수정
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 Results : Cora_ml
 GPU Memory의한계로인해,  Meta Learning의 training iterations T를기존 100보다작
은 15로수정함.

 그결과약간의성능차이가존재하나, 비슷한경향을얻을수있었음.
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정확도 28% 하락
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 Results : Citeseer
 GPU Memory의한계로인해,  Meta Learning의 training iterations T를기존 100보다작
은 15로수정함.

 그결과약간의성능차이가존재하나, 비슷한경향을얻을수있었음.
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정확도 9% 하락
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 Results : Polblogs
 GPU Memory의한계로인해,  Meta Learning의 training iterations T를기존 100보다작
은 15로수정함.

 그결과약간의성능차이가존재하나, 비슷한경향을얻을수있었음.
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정확도 19% 하락
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 Results : Visualization
 더나아가, Edge의변화를관측하기위해 Visualization 실행

 생긴 Edge들이훨씬많음을육안으로관찰가능
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 Results : Statistical Analysis
 논문에서는알수없었던 Node, Edge의통계적변화관찰

 cora_ml → cora_ml_both_5

 Edges : 오직생성을통해공격
 Deleted Edges: 0

 Created Edges: 798

 Nodes : Train, Test 할것없이모두영향받음
 Effected Train Nodes: 282

 Effected Test Nodes: 202

 다른데이터셋에서도비슷한경향관측
 Citeseer

 Deleted Edges가 0은아니나 Created Edge가훨씬많음

 마찬가지로 Train, Test 할것없이모두영향받음
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