Efficient Graph Generation with

Graph Recurrent Attention Networks
In NeurlPS 2019

Seonguk Seo
2018-20721
Seoul National University

Existing Work

= Graph RNN [oul8]

* It models graph generation as a sequential process, which accommodate complex
dependencies between generated edges.

= O(N?) for the best model (not scalable).

* |t has significant bottlenecks in handling long-term dependencies, and the results
depend on node orderings.

[You18] Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton, and Jure Leskovec. Graphrnn: Generating realistic
graphs with deep auto-regressive models. In ICML 2018

Contributions

* Their model consists of O(N) auto-regressive generation steps.

= Compared to RNN-based model, they propose an attention-based GNN that
better utilizes the topology of the already generated graphs.

* They approximate the likelihood by marginalizing over a family of canonical
node orderings.

Representation of Graphs

= Model the distribution of undirected graph ¢ = (V, E):

P(G)=) P(G,m) =) P(Ax) =) P(Ln)

where m denotes a node ordering, A, IS an adjacency matrix and L, denotes a
lower triangular part of A,.

Graph at t step
o o A

A \® @ - Ly, ,
© T

e Adjacency Matrix

Representation of Generation Process

* They generate one block of B rows of L, for each time step in one pass
conditioned on the already generated graphs.

* By increasing the block size and the stride of generation, they can trade-off
model expressiveness for speed.

Sampled Graph Sampled Graph Sampled Graph
at 1st step at 2nd step at 3rd step

X

i m

Graph Recurrent Attention Networks (GRAN)

Graph at t-1 step Graph at t step

0 E> Recurrent E> o
Attention
Network ' o
0“ 1 x
—2
1 g‘ g t
L, (5 7.
4 t—1
3 r . 5 T
4 b1 new block (node 5, 6) Output distribution on i b,
: i augmented edges (dashed) augmented edges 6
Adjacency Matrix Adjacency Matrix

Figure 1: Overview of our model. Dashed lines are augmented edges. Nodes with the same color
belong to the same block (block size = 2). In the middle right, for simplicity, we visualize the output

Graph Recurrent Attention Networks (GRAN)

Hp L, LT).

* RNNs are standard neural networks for handling this sequential dependency
structures.
» |t may cause long-term bottleneck on graph topology.
» Thus they use GNNs to make generation decisions depend on the graph structure.

» They do not carry hidden states of GNNs from one generation step to the next,
which enables parallel training.
» This is more efficient than typical auto-regressive models.

Graph Recurrent Attention Networks (GRAN)

= |nitial Node Representation
hy, =WLE +b, Vi<t

* Message Passing

mgj = f(h] — h;), a;; = Sigmoid (g(ibf — B;)) :
h%ﬂ — [hgv 337;], hg_H — GRU(hLZg’GN(i) a%ﬂjmzj '

= Output Distribution y
p(L3, L5, Lg,_) =D ar |1 1] ks
k=1 i€by 1<5<i

ai,...,ax = Softmax (Zieb 1<quLPO‘(hf — hf)) :

01,2',_7', .o 79K,’i,j = SlngId (MLPg(hf’ — hf’))

Graph Recurrent Attention Networks (GRAN)

Graph at t step

6
S L e A N\D @
oo 0‘9'9 o> ©

Graph at t-1 step

Network
o 1
1 - ‘ 2 bt —2
bi_2 3 LT
2 (5)]
4 bt—1
3 T U g ™
4 ﬂ b1 new block (node 5, 6) Output distribution on :ij Lb .
: i augmented edges (dashed) augmented edges 6
Adjacency Matrix Adjacency Matrix

Node Representation

* They first compute the initial node representations of the already-generated
graph via a linear mapping

hg, =WLE +b, Vi<t

= For current block, hy, =0

= In practice, computing hy, . alone at t" generation step is enough, because
{nY |i <t —1} can be cached from previous steps, which reduces computation.

Graph Neural Network with Attentive Message Passing

* From the initial node representation, all edges associated with the current block
are generated using a GNN.

= The rth round of message passing is
mi; = f(hi — h), aj; = Sigmoid (g(h; — £5)),
hi = [hi, zi], hytt = GRU(R], > almy,

GEN(@) W

Graph at t-1 step Graph at t step

(2)

Graph
Recurrent
Attention
Network

I”
! \
! * \
\
\
A
\\
¥ Y . /I /
' oA y 1
\\\ ~ \‘\ \ / 2 L by
1 I . \‘\ N v
2 bz ~-(5) 3 Ly
4 't —1
3 T
2 u L i newblock (node5,) Output distribution on 5 :ij Ly
augmented edges (dashed) augmented edges 6

Adjacency Matrix Adjacency Matrix

11

Output Distribution

» After R round message passing, they obtain the final node representation vector,
and then model the probability of generating edges in the current block via a
mixture of Bernoulli distributions.

p(Lp, | Lp, » --- , Lp, 1 ZakH H kyiyg

1eby 1<5<1s

— R R
a1,...,ax = Softmax (Ziebt,lstiMLPa(hi - 1),
0145, -0k, = Sigmoid (MLPy(h;* — "))

Approximated Likelihood

P(G)=) P(G,m) =) P(Ag) =) P(Ly)

* They aim to maximize a lower bound:
logp(G) >log » * p(G,m)
TEQ

where the size Q achieve a tradeoff between tightness of the bound (usually
correlated with better model quality) and computational cost.

= Variational Interpretation

log p(G) > Eyajcylog p(G, m)] + H(g(x|@)), ¢"(rlG) =p(Gm)/ (3 ___ p(G,m))

WEQP

* They adopts DFS, BFS, k-core and degree descent ordering.

Experiments

= Dataset
» Grid : 100 standard 2D grid graphs with 100 < |V| < 400
= Protein : 918 protein graphs with 100 < |V| < 500
= Point Cloud : 41 simulated 3D point clouds with [V|,,, >= 1k

* 64% train split, 16% valid split, 20% test split

Evaluation Metrics

= Compare the distributions of graph statistics between the generated and
ground-truth graphs, by computing the maximum mean discrepancy (MMD) over

the following 4 statistics.

Degree distributions

Clustering coefficient distributions

The number of occurrences of all orbits with 4 nodes

Spectra of the graphs (the eigenvalues of normalized graph Laplacian)

> w N

15

Results

» For all metrics, lower value is preferred.

Grid Protein 3D Point Cloud
|V |max = 361, | E|max = 684 |V |max = 500, | E|max = 1575 |V |max = 5037, | E|max = 10886
|V |avg = 210, |E|ayg =~ 392 |V]avg = 258, |E|ag =~ 646 |V |avg = 1377, | E|ayg =~ 3074
Deg. Clus. Orbit Spec. Deg. Clus. Orbit Spec. Deg. Clus. Orbit Spec.

Erdos-Renyi 0.79 2.00 1.08 0.68 5.64¢ 2 1.00 1.54 9.13¢2 0.31 122 127 4.26e?
GraphVAE* 7.07¢=2 7.33¢72 0.12 1.44¢2 048 7.14e72 0.74 0.11 - - - -
GraphRNN-S 0.13 3.73e2 0.18 0.19 4.02e7% 4.79¢ %2 023 0.21 - - - -
GraphRNN 1.12¢72 7.73e % 1.03e 3 1.18e 2 1.06e 2 0.14 0.88 1.88e2 - - - -
GRAN 8.23¢ % 3.7% 3 159% 32 1.62¢ 2 198¢ 3 486e 2 013 513e 3 175¢ 2 051 021 745¢3

Table 1: Comparison with other graph generative models. For all MMD metrics, the smaller the better.
*. our own implementation, -: not applicable due to memory issue, Deg.: degree distribution, Clus.:
clustering coefficients, Orbit: the number of 4-node orbits, Spec.: spectrum of graph Laplacian.

16

Visualization

» Sample graphs generated by GRAN with its comparison.

Protein Gri Gri

Protein

GraphRNN GRAN (Ours)

>
AR Se%
R
NS %
RSSO
e S
AR

Figure 2: Visualization of sample graphs generated by different models.

17

Ablation: Efficiency vs Sample Quality

= The main limiting factor for graph generation speed is the number of generation
steps T, which is related to the block size B.

= If B grows, which can improve speed, the model quality may suffer.
* They propose “stride sampling”, where neighboring blocks have an overlap

w
o
O
o

(o]
(=]

Ratio of Our Speed to GraphRNN

2 5l 1 Clustering
[Orbits

~
o

N
o

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

L
(o))
o

()]
s
=
*
2.4 1| 150
+ ! 140
S
=10 — 30
(@)}
ks 20
0.5

=
o

o

Stride (Block size = 16)

18

Code Review

» B : batch size, C : number of orderings, K : block size, E : number of edges
N : number of rows (nodes) of adjacency matrix

= A:adjacency matrix (B * C* N * N)

= att_idx : indicator of newly generated nodes (N * 1)

» edges : list of edges [incoming / outgoing node index] (E * 2)
= Repository link : https://github.com/skynbe/GRAN

19

https://github.com/skynbe/GRAN

Code Review — Node Embedding

Caching node embeddings

From ii to ii+K : node
orderings of current block

self.decoder_input :

hy, =WLE +b, Vi<t

Set node embeddings of
current block to 0

node_state = torch.zeros(B, N_pad, dim_input).to(.device)

for ii in range(?, N_pad, S):

jj = ii + K
if jj > N_pad:
break

Al:, ii:, :] =
A = torch.tril(A, diagonal=-1)

if ii >= K:
if .dimension_reduce:
node_state[:, ii - K:ii, : .decoder_input(A[:, ii - K:ii, :NJ])
else:
node_state[:, ii - K:ii, : Al:, ii - S:ii, :N]
else:
if .dimension_reduce:
node_state[:, :ii, :] = .decoder_input(A[:, :ii, :N])
else:
node_state[:, :ii, : A[:, ii - S:ii, :N]

node_state_in = F.pad(
node_state(:, :ii, :1, (0, ©, 0, K), 'constant', value=.0)

20

Code Review — Attentive Message Passing

Translating adjacency matrix to adj = F.pad(
list of edges (for computation) [, :ii, :ii], (2, K, 0, K), 'constant', value=1.0)
adj = torch.tril(adj, diagonal=-1)
adj = adj + adj.transpose(1, 2)
edges = [
adj [bb].to_sparse().coalesce().indices() + bb * adj.shape[1]
for bb in range(B)
]
edges = torch.cat(edges, dim=1).t()

att_idx : indicator x att_idx = torch.cat([torch.zeros(ii).long(),
= r torch.arange(1, K + 1)]).to(.device)
hi ::[hiaaﬁ]: att_idx = att_idx.view(1, -1).expand(B, -1).contiguous().view(-1, 1)

att_edge_feat = torch.zeros(edges.shapel[?],
* .att_edge_dim).to(.device)
att_edge_feat = att_edge_feat.scatter(1l, att_idx[[edges[:, 0111, 1)
att_edge_feat = att_edge_feat.scatter(
, att_idx[[edges[:, 11]1] + .att_edge_dim, 1)

node_state_out = .decoder(
node_state_in.view(-1, H), edges, edge_feat=att_edge_feat)
node_state_out = node_state_out.view(B, jj, -1)

self.decoder :
message passing GNN

Code Review — Attentive Message Passing

node_state_out = .decoder(
node_state_in.view(-1, H), edges, edge_feat=att_edge_feat)

_prop(, state, edge, edge_feat, layer_idx=0):

Compute message state_diff = stateledgel:, 21, :] - stateledgel:, 11, :]

ro_ r r if .edge_feat_dim >
mz’j — f(hz o hj)v edge_input = torch.cat([state_diff, edge_feat], dim=1)
else:

_ edge_input = state_diff
Compute attention

msg = .msg_func[layer_idx] (edge_input)
* — Sigmoi KT — RT
a;; = Sigmoid (g(h@ hﬂ)) 7 if .has_attention:
att_weight = .att_head[layer_idx] (edge_input)
msg = msg * att_weight
Aggregate message state_msg = torch.zeros(state.shape[?], msg.shape[1]).to(state.device)
scatter_idx = edgel:, [1]].expand(-1, msg.shapel[l])
State update by GRU state_msg = state_msg.scatter_add(?, scatter_idx, msg)
hrtl — GRU(KT a’ - mr.). state = .update_func[layer_idx] (state_msg, state)
’ (“ZJ"'EN(“') " U) return state

22

Code Review — Output Distribution

node_state_out = .decoder(
node_state_in.view(-1, H), edges, edge_feat=att_edge_feat)
node_state_out = node_state_out.view(B, jj, -1)

idx_row, idx_col = np.meshgrid(np.arange(ii, jj), np.arange(jj))
idx_row = torch.from_numpy(idx_row.reshape(-1)).long().to(.device)
idx_col = torch.from_numpy(idx_col.reshape(-1)).long().to(.device)

diff = node_state_out[:,idx_row, :] - node_state_out[:,idx_col, :]
diff = diff.view(-1, node_state.shape[2])

log_theta .output_theta(diff)
log_alpha .output_alpha(diff)
log_theta log_theta.view(B, -1, K, .num_mix_component)
Get output alpha and theta log_theta = log_theta.transpose(1, 2)
ah.“,axw:Soﬁnmx(E:, .'NHJ%Ahf__th), log_alpha = log_alpha.view(B, -1, .num_mix_component)
o fbhgﬁﬁzR prob_alpha = F.softmax(log_alpha.mean(dim=1), -1)
014,---0k.i,; = Sigmoid (MLPy(h;* — hj")) alpha = torch.multinomial(prob_alpha, 1).squeeze(dim=1).1long()

prob = []
for bb in range(B):
Get mixture of Bernoulli distribution prob += [torch.sigmoid(log_theta[bb, :, :, alphal[bb]l)]
K
T o _ prob = torch.stack(prob, dim=0)
p(Lg, | Lg, s -y bt-l)_zakn H Ok,i.5; Al:, ii:jj, :jj]l = torch.bernoulli(prob([:, :jj - ii, :1)
k=1

1€bs 1<9<4

23

Reproducing Results

» Trained, validated and tested on Grid Dataset

= Validation MMD scores :
» degree 1.73e-3, clustering 3.51e-4, orbits 1.92e-3, spectral 2.41e-2

» Test MMD scores :
» degree 9.36e-3, clustering 3.50e-4, orbits 1.63e-3, spectral 1.33e-2

e Github link : https://github.com/Irjconan/GRAN

24

https://github.com/lrjconan/GRAN

