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Pre-training GNN ?

problem

-

=Scarcity of labeled data

=Qut-of-distribution prediction
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solution

-

Pre-training a model on
related tasks where data is
abundant

.

* How to pre-train GNNs ?



Proposed strategies for pre-training GNN

* Pre-train both node and graph embeddings

Node-level (a.ii)

pre-training only

(a.i) Graph-level

pre-training only

(a.iii) Node-level +
Graph-level pre-training
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Pre-training on node labels
(can be self-supervised)
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Proposed strategies for pre-training GNN
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(b) Categorization of our pre-training methods
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Context Prediction
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Context Prediction

Node-level | Graph-level
Structure zilrmuil.:lr;l
prediction Prediction
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Context Prediction Atribute | atrbuie | SRETVSES
2. Context GNN (auxiliary GNN)
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Context Prediction

e
Struture siniary
3. Learning via negative sampling
 Jointly learn the main GNN and context GNN
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Attribute Masking

* masked node(edge) attributes are predicted with GNN
= Useful for richly-annotated graphs from scientific domains
= EX) Atom type in molecular graphs
Input graph (b) Attribute Masking
P
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Cl HN
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X = Masked node
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Node-level ra eve

Supervised Attribute prediction

Attribute
prediction

Structure
prediction

» Graph-level multi-task supervised pre-training

= Jointly predict a diverse set of supervised labels of individual graphs
» EX) predict all the properties of molecules measured so far
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Node-level | Graph-level

Structural Similarity Prediction

prediction

Structure
prediction

* Predict the structural similarity of two graphs
» EX) graph edit distance, graph structure similarity

» Ground truth graph distance is difficult to be found
» Quadratic number of graph pairs in large dataset

- Future work
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Overall Strategy

1. Node-level pre-training on unlabeled data
2. Graph-level pre-training on labeled data
3. Fine-tune on downstream data

1
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Experiments and Results

Chemistry Biology
Non-pre-trained | Pre-trained | Gain | Non-pre-trained | Pre-trained | Gain
GIN 67.0 74.2 +7.2 64.8 £ 1.0 742+ 1.5 | 494
GCN 68.9 72.2 +3.4 63.2+ 1.0 709 £ 1.7 | +7.7
GraphSAGE 68.3 70.3 +2.0 65.7+ 1.2 685+ 15 | +2.8
GAT 66.8 60.3 -6.5 68.2 + 1.1 678 +3.6 | -04

Table 2: Test ROC-AUC (%) performance of different GNN architectures with and without
pre-training. Without pre-training, the less expressive GNNs give slightly better performance
than the most expressive GIN because of their smaller model complexity in a low data regime.
However, with pre-training, the most expressive GIN is properly regularized and dominates the other
architectures. For results split by chemistry datasets, see Table 4 in Appendix H. Pre-training strategy
for chemistry data: Context Prediction + Graph-level supervised pre-training; pre-training strategy
for biology data: Attribute Masking + Graph-level supervised pre-training.
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Experiments and Results

Dataset BBBP Tox21 ToxCast SIDER ClinTox MUV HIV BACE Average
# Molecules 2039 7831 8575 1427 1478 93087 41127 1513 /
# Binary prediction tasks 1 12 617 27 2 17 1 1 /
Grag;igj;lmg;t;?iiglzvel Out-of-distribution prediction (scaffold split)
- - 658 +45 740+08 634+06 573+16 580+44 7T1.8+25 753419 70.1+54 67.0
- Infomax 68.8 £0.8 753+05 62.7+04 584408 699430 753425 76007 759=+1.6 70.3
- EdgePred | 67.3 +24 76.04+0.6 64.1 £0.6 604 +0.7 64.1+3.7 741421 763+1.0 79.9+09 70.3
| — | AwrMasking | 64.3 £2.8 767 +04 642405 61.0+07 71.8+41 747 +14 T72E£11 T93+1.6 | TI.1
- ContextPred | 68.0 £2.0 75.7+0.7 639 +06 609 +06 659+38 758+1.7 7734+10 79.6+12 70.9
Supervised — 68.3 £0.7 77.0+£03 64.4+04 62.1+05 572+£25 794+13 74412 769+1.0 70.0
Supervised Infomax 68.0£1.8 778103 649+0.7 609406 712428 813+14 778109 80.1+09 72.8
Supervised EdgePred | 66.6 +2.2 783403 66.5+03 633109 709146 785424 775+08 79.1+3.7 72.6
| Supervised | AttrMasking | 66.5 £2.5 779 404 65.1+03 63.9+09 73.7+28 81.2+19 77.1+12 803+09 | 732 |
Supervised | ContextPred | 68.7 +1.3 78.1 +0.6 65.7 £0.6 62.7+0.8 72.6 +1.5 81.3+2.1 79.9 +0.7 84.5+0.7 74.2
Pre-training strategy Out-of-dist. L0 3 L0
Graph-level | Node-level | (species split) 2
. . 4810 | |5, 7 55
- Infomax 64.1 +1.5 55 i 58
- EdgePred 65.7 +1.3 2 D A ég
I K ContextPred | 652 +1.6 | g = / ﬂ
— AttrMasking 64.4 £1.3 to” _ g3" Attbute Maskin ] _ |
Supervised — 69.0 £2.4 g . b opsiesd 2 2. helps avoiding ? n ﬁt;mt:;;ﬁg:gizaﬂ on
SupEWiSEd Infomax 72.8 £1.5 © ' out of 40 tasks. 2% ::?:::‘i::::‘er over pure graph-level pre-
Supervised | EdgePred 723 +14 . Z . N I
Supervised | ContextPred 73.8 + 1.0 L e helevel subervised
Supervised | AtrMasking | 74.2 £1.5 L B pre-training only
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Experiments and Results

Chemistry: MUV Biology: PPI prediction _
1.0 - » Non-pre-trained
: s 1.0

0.0 - —— Random initialization
S 03 - 0-97 » Pre-trained
o o —— Graph-level supervised
£ 07 = 087 pre-training + Masking
= 06 = o] —— Graph-level supervised

0.5 ' pre-training only

0.4 T T T T T T 0.6 T T T T T T MaSking

0 20 40 60 80 100 0 10 20 30 40 50
Epoch Epoch

Figure 4: Training and validation curves of different pre-training strategies on GINs. Solid and
dashed lines indicate training and validation curves, respectively.
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Conclusions

» Systematic study of pre-training GNNs
* Develop a novel strategy for pre-training GNNs

» Consider both node-level and graph-level pre-training with an
expressive GNN.
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Reproducing

AL ShE == /UL

https.//github.com/snap-stanford/pretrain-gnns
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https://github.com/snap-stanford/pretrain-gnns

1. Self-supervised pre-training
» Pretrain_masking.py
» Pretrain_contextpred.py
» Pretrain_edgepred.py
» Pretrain_deepgraphinfomax.py

2. Supervised pre-training
= Pretrain_supervised.py

3. Fine-tuning
* Finetune.py

J. W. Shim. SNU
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(pretraingnn) woong@ubuntu:~/pretraingnn/pretrain-gnns/chems sh finetune tune woong.sh 1 8
MoleculeDataset(1513)
scaffold ) ) ) )
. F)rfftrfiir1ir1§3 E%; Egj Eg;;[?dge_attr=[55, 21, edge_inde 1. fold=[1], id=[1]. x=[31, 21, y=[1])
.. . .. Parameter Group @
« Context prediction + supervised pretraining

- COJE{4l : BACE Ci|O|E Al Ur: 0,001
welght_decay: @
¢ BACE. Qualitative binding results for a set of inhibitors of human [-secretase 1 (Subrama-
nian et al., 2016).
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