
FASTGCN: FAST LEARNING WITH
GRAPH CONVOULTIONAL NETWORKS VIA

IMPORTANCE SAMPLING

Jie Chen, Tengfei Ma, Cao Xiao

ICLR 2018

김준하

CONTENTS

1. Motivation

2. Method

3. Comparison with GraphSAGE

4. Result

5. Conclusion

Motivation

● Computational scalability

Computational Scalability

● Recursive expansion of neighborhoods across layers
○ Incurring expensive computations in batched training

○ Even for a single vertex, quickly fill up a large portion of the graph

Computational Scalability

● Propose new interpretation of graph convolution
○ Yield a controllable cost for per-batch computation

Method

● New interpretation of graph convolution
a. As integral transforms of embedding function under probability measures

b. Approximation of the integral transforms by Monte Carlo manner

c. Reduce computational cost by controlling number of samples while the

performance is still comparable

Graph convolution as integral transform of function

● Assumption
a. Graph vertices are i.i.d samples of some probability distribution P

b. GCN operation: each layer defines an embedding function of vertices

Graph convolution as integral transform of function

● Assumption
a. Graph vertices are i.i.d samples of some probability distribution P

b. GCN operation: each layer defines an embedding function of vertices

c. Integral transform of the embedding function

Approximation by Monte Carlo manner

● Monte Carlo method
○ A subset of computational algorithms that use the process of repeated random

sampling to make numerical estimations of unknown parameters

○ Writing GCN in the functional form allows for evaluating the integrals in the

Monte Carlo manner, which leads to a batched training algorithm

Approximation by Monte Carlo manner

● Monte Carlo method (GCN, integral, Apprx by MC)

Approximation by Monte Carlo manner

● Monte Carlo method (GCN, integral, Apprx by MC)

Algorithm

● Assume sample distribution as uniform
○ Original distribution is unknown

12

Comparison with GraphSAGE

● GraphSAGE (Hamilton et al., 2017)
○ Architecture for generating vertex embeddings through aggregating

neighborhood information

○ Memory bottleneck with GCN, caused by recursive neighborhood expansion

○ Also restrict neighborhood size to reduce computational cost

Comparison with GraphSAGE

● GraphSAGE (Hamilton et al., 2017)
○ Samples neighbors

○ tL neighbors for each vertex in L-th layer
■ Total cost of expanded neighborhood: O(ΠLtL) : product of tL’s

● FastGCN
○ Sample vertices

○ tL vertices for L-th layer
■ Total cost of expanded neighborhood: O(ΣLtL) : sum of tL’s

Variance Reduction by Importance Sampling

● Importance sampling
○ Certain values of the input random variables have more impact on the

parameter being estimated than others.

○ Choose a distribution which "encourages" the important values

Variance Reduction by Importance Sampling

17

Variance Reduction by Importance Sampling

Results

18

Results

19

Conclusion

● Propose sampling scheme in reformulation of loss and gradient,

well justified through an alternative view of graph convolutions

in form of integral transforms of embedding function, which yield

controllable cost for per-batch computation

● An additional investigation whether and how variance reduction

may improve the estimator by importance sampling

20

Code Analysis

● The code is tensorflow based implementation

○ link: https://github.com/matenure/FastGCN

● Main training loop

○ Importance sampling

● Main model implementation

○ Sparse matrix operation

● Results

● Execution guide

https://github.com/matenure/FastGCN

Main training loop

● rank: # of samples

● support: normalized

adj matrix

● q1: sampled indices

● p0: degree

Main training loop

If rank is not given or

larger than total number

of nodes

→ Use all samples

Main training loop

If not, sample node indices

according to distribution

proportional to degree of

the nodes.

: Importance sampling

And then use subset of

matrix and input features

corresponding to the

sampled indices

Main training loop

Finally, with selected

adjacency matrix

(normalized) and input

features, train the model

Model implementation

● Get preprocessed input features as AX, not just input X

● Use Adam optimizer

● Final output dimension is same as number of class of label

Model implementation

● Model consists of a FC layer

with relu followed by GCN

Model implementation

● For GCN module, use sparse matrix

multiplication implemented in

tensorflow

Model implementation

● Output probability by

using softmax

function

● Cross entropy loss for

multiple-classification

loss

Results

● Overall score is similar to the

one reported

● Cora

○ The result for (uni, 50) is far

lower than reported
■ About 83(%)

● Pubmed

○ Uniform > Importance

● The difference might caused by

○ Different version of package

○ GPU model

Dataset
Sampling

method

of

sample

s

Accuracy
Training time

(per epoch)

Cora

Uniform
10 77.60 0.0183s

50 68.30 0.0203s

Importance
10 78.30 0.0220s

50 84.70 0.0209s

Pubmed

Uniform
10 85.20 0.2977s

50 86.60 0.3336

Importance
10 82.90 0.2266s

50 86.10 0.2164s

Execution guide

1. docker pull tensorflow/tensorflow:1.4.1-devel-gpu-py3

2. Run the image and attach the created container

3. apt update && apt upgrade -y && apt install git -y

4. git clone https://github.com/matenure/FastGCN.git
a. Dataset in data/ directory (no need to download)

5. pip install networkx==1.11

6. Run code
a. python3 pubmed_Mix_sampleA.py (for importance sampling)

b. python3 pubmed_Mix_uniform.py (for uniform sampling)

c. Change argument of main() function to change # of samples

d. Change FLAG.dataset (line 20) to ‘cora’ or ‘pubmed’

https://github.com/matenure/FastGCN.git

