FASTGCN: FAST LEARNING WITH
GRAPH CONVOULTIONAL NETWORKS VIA
IMPORTANCE SAMPLING

Jie Chen, Tengfei Ma, Cao Xiao

ICLR 2018

b

CONTENTS

1. Motivation

2. Method

3. Comparison with GraphSAGE
4. Result

5. Conclusion

Motivation

e Computational scalability

Computational Scalability

® Recursive expansion of neighborhoods across layers

O Incurring expensive computations in
o Even for a single vertex, quickly fill up a large portion of the graph

=
()
1. Sample neighborhood 2. Aggregate feature information 3. Predict graph context and label
from neighbors using aggregated information

Figure 1: Visual illustration of the GraphSAGE sample and aggregate approach.

Computational Scalability

e Propose new interpretation of graph convolution
o Yielda

Method

e New interpretation of graph convolution
a. As under probability measures
b. Approximation of the integral transforms by
C. by controlling number of samples while the

Graph convolution as integral transform of function

® Assumption

a. Graph vertices are i.i.d samples of some probability distribution P
b. GCN operation: each layer defines an embedding function of vertices

A0+ = AFOW® gD — Gy j—0.. . M—1, L=- Y " g(HM) (i,).
n
=1
()

Graph convolution as integral transform of function

® Assumption
a. Graph vertices are i.i.d samples of some probability distribution P
b. GCN operation: each layer defines an embedding function of vertices
c. Integral transform of the embedding function

HOGD = AgOWO . gD = g(FGD), 1 =0,...,.M -1, L= ! Y " g(HM (G,).
n
=1

(1)

For the functional generalization, we write

L = Eyplg(h® (v))] =] g (K™ (v)) dP(v).

R (v) = / A, wh (WD dPw), R ()=o), 1=0,...,M —1,

2)
3)

Approximation by Monte Carlo manner

® Monte Carlo method

O A subset of computational algorithms that use the process of
to make numerical estimations of unknown parameters
O Writing GCN in the functional form allows for evaluating the integrals in the
Monte Carlo manner, which leads to a

Approximation by Monte Carlo manner

e Monte Carlo method (GCN, integral, Apprx by MC)

A = AgOw® - gD — o(FED) 1 =0,...,M —1,

For the functional generalization, we write

AU+ (y) = /A(v,u)h(“(u)W(” dP(w), hUD@w) =R (W), 1=0,...,.M —1,

ASRIC ZA(v,u i (wi WO, byt P (0) = o(hi D), 1=0,...,M 1,

ti41 141 ti+1

Approximation by Monte Carlo manner

e Monte Carlo method (GCN, integral, Apprx by MC)

L= 3 g(HOG,),

L = Eyoplg(h®™ ()] = / g(h (v)) dP(v).

Algorithm

® Assume sample distribution as uniform

O Original distribution is unknown

Algorithm 1 FastGCN batched training (one epoch)
1. for each batch do

(1) (1)

2: For each layer [, sample uniformly ¢; vertices uy ', . . ., u;,
3: for each layer [do > Compute batch gradient V Lyach
4: If v is sampled in the next layer,

t;
N n ~ l l
VH @, > A, ")yV{HO W, yw® |
j=1
end for

W < W — nV Lyach > SGD step
end for

AR

Comparison with GraphSAGE

® GraphSAGE (Hamilton et al., 2017)

O Architecture for generating vertex embeddings through aggregating

neighborhood information

Memory bottleneck with GCN, caused by recursive neighborhood expansion
o Also restrict neighborhood size to reduce computational cost

Comparison with GraphSAGE

® GraphSAGE (Hamilton et al., 2017)

o Samples neighbors

1. Sample neighborhood

O t, neighbors for each vertex in L-th layer
m Total cost of expanded neighborhood: O(N,t,) : product of t,’s

® FastGCN

O Sample vertices
O t, vertices for L-th layer

m Total cost of expanded neighborhood: O(Z;t)) : sumof t,’s

Variance Reduction by

e Importance sampling
o Certain values of the input random variables have on the
parameter being estimated than others.
o Choose a distribution which

Variance Reduction by

_ f(Xs)
pd f(X;)

Y;

e
-

. o
L »

Figure A.2: Comparison of three probability density functions. The PDF on the right provides variance
reduction over the uniform PDF in the center. However, using the PDF on the left would significantly
increase variance over simple uniform sampling.

Variance Reduction by

Algorithm 2 FastGCN batched training (one epoch), improved version

1: |For each vertex u, compute sampling probability g(u) o || A(:, u)||?
2: for each batch do
3: For each layer [, sample ¢; vertices u() ug) according to distribution g
4 for each layer [do > Compute batch gradient V Ly,
5 If v is sampled in the next layer,
A(v, u(l)
VA () « = . Z (G)v{ HO u?, :)W(z)}

l q(u;”’)
6: end for
7: W « W — 1V Lpaten > SGD step
8: end for

Results

Il FastGCN

10 %ggﬂhSAGE - Micro F1 Score
O W Cora Pubmed Reddit
810" — : FastGCN 0.850 0.880 0.937
& GraphSAGE-GCN 0.829 0.849 0.923
g GraphSAGE-mean 0.822 0.888 0.946
F10T | GCN (batched) 0.851 0.867 0.930
J I GCN (original) 0.865 0.875 NA
107 Cc;ra Pub;ned Retljdit

Figure 3: Per-batch training time in seconds (left) and prediction accuracy (right). For timing,
GraphSAGE refers to GraphSAGE-GCN in Hamilton et al. (2017). The timings of using other ag-
gregators, such as GraphSAGE-mean, are similar. GCN refers to using batched learning, as opposed
to the original version that is nonbatched; for more details of the implementation, see the appendix.
The nonbatched version of GCN runs out of memory on the large graph Reddit. The sample sizes
for FastGCN are 400, 100, and 400, respectively for the three data sets.

Results

B Uniform

| [Jimportance

| Il Uniform

[limportance

{ Il Uniform
| [L_Jimportance

® 0.85 ‘ - ‘

8

o 08¢ H IH

L 0.75 | - ‘
10 25 50

® 09 ‘ - B

2o 1L 1

L 08 ‘ .
10 25 50

© 0.94 ‘ - —

S0.902! H

2 1|

N 0.9 .H . |
25 50 100

Sample size

Figure 2: Prediction accuracy: uniform versus impor-
tance sampling. The three data sets from top to bottom

are ordered the same as Table 1.

Conclusion

® Propose in reformulation of loss and gradient,
well justified through an
in form of integral transforms of embedding function, which yield

® An additional investigation whether and i

Code Analysis

e The code is tensorflow based implementation
o link: https://github.com/matenure/FastGCN
® Main training loop

O Importance sampling
® Main model implementation
O Sparse matrix operation
® Results
® Execution guide

https://github.com/matenure/FastGCN

Main training loop

for batch in iterate_minibatches_listinputs([normAD]_train, y_train], batchsize=1824, shuffle=True):

Y rank: # Of Samp|eS [normADJ_batch, y_train_batch]l = batch
e support: normalized L rankl is None:
supportl = sparse_to_tuple(normAD]_batch)
adJ matrlx features_inputs = train_features
else:
) ql. Sampled |ndlces distr = np.nonzero(np.sum(normADJ_batch, axis=0))[1]
if rankl > len(distr):
e pO0:degree 9l = distr
else:

ql = np.random.choice(distr, rankl, replace=False, p=p@[distr]/sum(p@[distr])) # top layer

supportl = sparse_to_tuple(normAD]_batch[:, gl].dot(sp.diags(1.0 / (p@[gl] * rankl))))
if len(supportl([1])==0:
continue
features_inputs = train_features[gl, :]1 # selected nodes for approximation
Construct feed dictionary
feed_dict = construct_feeddict_forMixlayers(features_inputs, supportl, y_train_batch,
placeholders)
feed_dict.update({placeholders['dropout']: FLAGS.dropout})

Main training loop

for batch in iterate_minibatches_listinputs([normAD]_train, y_train], batchsize=1824, shuffle=True):
[normADJ_batch, y_train_batch]l = batch

If rank is not given or

larger than total number 1f rankl is None:
supportl = sparse_to_tuple(normAD]_batch)
()f r]()(jeas features_inputs = train_features
else:

distr = np.nonzero(np.sum(normADJ_batch, axis=0))[1]
if rankl > len(distr):

— Use all samples

gl = distr

else:
ql = np.random.choice(distr, rankl, replace=False, p=p@[distr]/sum(p@[distr])) # top layer

supportl = sparse_to_tuple(normAD]_batch[:, gl].dot(sp.diags(1.0 / (p@[gl] * rankl))))
if len(supportl([1])==0:
continue
features_inputs = train_features[gl, :]1 # selected nodes for approximation
Construct feed dictionary
feed_dict = construct_feeddict_forMixlayers(features_inputs, supportl, y_train_batch,
placeholders)
feed_dict.update({placeholders['dropout']: FLAGS.dropout})

Main training loop

for batch in iterate_minibatches_listinputs([normAD]_train, y_train], batchsize=1824, shuffle=True):

If not, sample node indices
according to distribution
proportional to degree of
the nodes.

And then use subset of
matrix and input features
corresponding to the
sampled indices

[normADJ_batch, y_train_batch] = batch

if rankl is None:
supportl = sparse_to_tuple(normAD]_batch)
features_inputs = train_features
else:
distr = np.nonzero(np.sum(normADJ_batch, axis=0))[1]
if rankl > len(distr):
gl = distr

else:
ql = np.random.choice(distr, rankl, replace=False, p=p@[distr]/sum(p®[distr]))

if len(supportl([1])==0:
continue
features_inputs = train_features[gl, :]1 # selected nodes for approximation

1

supportl = sparse_to_tuple(normAD]_batch[:, gl].dot(sp.diags(1.0 / (p@[gl] * rankl))))

op layer

Construct feed dictionary

feed_dict = construct_feeddict_forMixlayers(features_inputs, supportl, y_train_batch,
placeholders)

feed_dict.update({placeholders['dropout']: FLAGS.dropout})

Main training loop

Construct feed dictionary
. . feed_dict = construct_feeddict_forMixlayers(features_inputs, supportl, y_train_batch,
Flna”y, Wlth SelectEd placeholders)

feed_dict.update({placeholders['dropout']: FLAGS.dropout})

adjacency matrix # Training step

outs = sess.run([model.opt_op, model.loss, model.accuracy], feed_dict=feed_dict)

(normalized) and input
features, train the model

Model implementation

® Get preprocessed input features as AX, not just input X
e Use Adam optimizer
e Final output dimension is same as number of class of label

class GCN_APPRO_Mix{Model): #mixture of dense and gcn
def __init__(self, placeholders, input_dim, sxkwargs):
super (GCN_APPRO_Mix, self).__init__ (#xkwargs)
self.inputs = placeholders['AXfeatures']# AxX for the bottom layer, not original feature X
self.input_dim = input_dim
self.input_dim = self.inputs.get_shape().as_list()[1] # To be supported in future Tensorflow versions
self.output_dim = placeholders['labels'].get_shape().as_list()[1]
self.placeholders = placeholders
self.support = placeholders|['support"']

self.optimizer = tf.train.AdamOptimizer(learning_rate=FLAGS.learning_rate)

self.build()

Model implementation

e Model consists of a FC layer ~ ¢¢f -buildiself):
self. layers.append(Dense(input_dim=self.input_dim,

with relu followed by GCN output_dim=FLAGS.hiddenl,
placeholders=self.placeholders,
act=tf.nn.relu,
dropout=True,
sparse_inputs=False,
logging=self.logging))

self.layers.append(GraphConvolution(input_dim=FLAGS.hiddenl,
output_dim=self.output_dim,
placeholders=self.placeholders,
support=self.support,
act=lambda x: x,
dropout=True,
logging=self. logging))

Model implementation

def dot(x, y, sparse=False):
"""Wrapper for tf.matmul (sparse vs dense)."""
implemented in if sparse:

tensorflow res = tf.sparse_tensor_dense_matmul(x, y)
else:

® For GCN module, use

res = tf.matmul(x, y)
return res

Model implementation

.- def dict 1f):
e Output probability by " predictisetn
return tf.nn.softmax(self.outputs)
using
def _loss(self):
function # Weight decay loss
for var in self.layers[@].vars.values():

° for .
self.loss += FLAGS.weight_decay * tf.nn.12_loss(var)

multiple-classification
Cross entropy error
self.loss += softmax_cross_entropy(self.outputs, self.placeholders['labels'])

loss

Results

® Overall score is similar to the
one reported
e Cora
O The result for (uni, 50) is far

lower than reported
B About 83(%)

e Pubmed
o Uniform > Importance

e The difference might caused by

o Different version of package
o GPU model

Dataset

Cora

Pubmed

Sampling
method

Uniform

Importance

Uniform

Importance

of
sample
S

10
50
10
50
10
50
10

50

Accuracy

77.60
68.30
78.30
84.70
85.20
86.60
82.90

86.10

Training time
(per epoch)

0.0183s
0.0203s
0.0220s
0.0209s
0.2977s
0.3336
0.2266s

0.2164s

Execution guide

B w N

o U

docker pull tensorflow/tensorflow:1.4.1-devel-gpu-py3
Run the image and attach the created container

apt update && apt upgrade -y && apt install git -y

git clone https://github.com/matenure/FastGCN.git

a. Dataset in data/ directory (no need to download)

pip install networkx==1.11

Run code

a. python3 pubmed_Mix_sampleA.py (for importance sampling)
b. python3 pubmed_Mix_uniform.py (for uniform sampling)
c. Change argument of main() function to change # of samples

e B — B M N Y 2 o o \

https://github.com/matenure/FastGCN.git

