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NerveNet: Learning Structured Policy with GNN

= Typically use MLP to learn the agent’s policy in RL
= Concatenation of observations from the environment

* This leads to longer training times, requiring more data

» To exploit the body structure of an agent, and physical dependencies

that naturally exist in such agents.
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NerveNet: Learning Structured Policy with GNN

* Bodies of most robots and animals have a discrete graph structure.

* NerveNet first propagates information over the structure of the agent
and then predict actions for different parts of the agent.

= Contribution:
* Policy Network as GNN
» Transfer learning ability

Visualization of the graph structure of CentipedeEight
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NerveNet: Learning Structured Policy with GNN
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NerveNet: Learning Structured Policy with GNN
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NerveNet: Learning Structured Policy with GNN

* Propagation Model

Propagation

Niode = Message Computation — mg, ;) = M (M)

" ) Indicates that edges of the same edge type share the same
instance of the message function. m., . is MLP

State
Update

= Message Aggregation  m = A({hL|v € N;,(W)})

= A() is the aggregation function which may be a summation, average

or max-pooling function.
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= States Update hitt = U, (hy,my,
Propagation model of NerveNet = p, is nodes of the same node type share the same instance of the

update function. U, is LSTM or GRU.
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NerveNet: Learning Structured Policy with GNN

Output Controller’s
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Output model of NerveNet = a' € A is the output action, and ay,is the variable

standard deviation for each action
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NerveNet: Learning Structured Policy with GNN

» _earning Algorithm
= PPO (Proximal Policy Optimization)

» Value Network
= NerveNet-MLP - GNN as the policy network, MLP as the value network
= NerveNet-2 — GNN as the policy network, another GNN as the value network
= NerveNet-1 — GNN as both policy and value network
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Results of several variants of NerveNet
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Experiments

HalfChertah Walkerdd

« Comparison on standard benchmark

« 8 continuous control benchmarks

« MulJoCo simulation

......

Walker2d Half-Cheetah

 TreeNet

 singly rooted depth-1 tree

« Aggregates the information and then S T
Results of MLP, TreeNet and NerveNet on 8

feeds the state vector to the output _
continuous control benchmarks from the gym

model
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Experiments

= Sjze transfer

" 6to 8 legs
= MLP+Pretrain
= TreeNet

= NerveNet
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Walk-cycle of natural insects
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Experiments

e Structure Transfer Learning

« Disability transfer

« Learn a model for the original agent and then

apply it some components disabled
» two back legs are disabled

« |If overfits, disabling some components of the

agent might bring catastrophic performance

degradation.

 NerveNet+Pretrain, MLPAA, Solved
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Experiments

« Multi-task experiments
 Constrain the Walker multi-task learning
« Aim to test the ability to control multiple agents using one unified network.
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Results of Multi-task learning. We train the networks simultaneously on five different tasks from Walker.
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My Opinion on this paper

* Pros

« Structured Policy

 Transfer learning experiments

« Cons

« Only for graph structured agents

« No significant difference compared to MLP
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