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Motivation

● Computational scalability



Computational Scalability

● Recursive expansion of neighborhoods across layers
○ Incurring expensive computations in batched training

○ Even for a single vertex, quickly fill up a large portion of the graph



Computational Scalability

● Propose new interpretation of graph convolution
○ Yield a controllable cost for per-batch computation



Method

● New interpretation of graph convolution
a. As integral transforms of embedding function under probability measures

b. Approximation of the integral transforms by Monte Carlo manner

c. Reduce computational cost by controlling number of samples while the 

performance is still comparable



Graph convolution as integral transform of function

● Assumption
a. Graph vertices are i.i.d samples of some probability distribution P

b. GCN operation: each layer defines an embedding function of vertices



Graph convolution as integral transform of function

● Assumption
a. Graph vertices are i.i.d samples of some probability distribution P

b. GCN operation: each layer defines an embedding function of vertices

c. Integral transform of the embedding function



Approximation by Monte Carlo manner 

● Monte Carlo method
○ A subset of computational algorithms that use the process of repeated random 

sampling to make numerical estimations of unknown parameters

○ Writing GCN in the functional form allows for evaluating the integrals in the 

Monte Carlo manner, which leads to a batched training algorithm



Approximation by Monte Carlo manner 

● Monte Carlo method (GCN, integral, Apprx by MC)



Approximation by Monte Carlo manner 

● Monte Carlo method (GCN, integral, Apprx by MC)



Algorithm

● Assume sample distribution as uniform
○ Original distribution is unknown
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Comparison with GraphSAGE

● GraphSAGE (Hamilton et al., 2017) 
○ Architecture for generating vertex embeddings through aggregating 

neighborhood information

○ Memory bottleneck with GCN, caused by recursive neighborhood expansion

○ Also restrict neighborhood size to reduce computational cost



Comparison with GraphSAGE

● GraphSAGE (Hamilton et al., 2017) 
○ Samples neighbors

○ tL neighbors for each vertex in L-th layer
■ Total cost of expanded neighborhood:  O( ΠLtL) : product of tL’s

● FastGCN
○ Sample vertices

○ tL vertices for L-th layer
■ Total cost of expanded neighborhood:  O( ΣLtL) : sum of tL’s



Variance Reduction by Importance Sampling

● Importance sampling
○ Certain values of the input random variables have more impact on the 

parameter being estimated than others.

○ Choose a distribution which "encourages" the important values



Variance Reduction by Importance Sampling
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Variance Reduction by Importance Sampling



Results
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Results
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Conclusion

● Propose sampling scheme in reformulation of loss and gradient, 

well justified through an alternative view of graph convolutions

in form of integral transforms of embedding function, which yield 

controllable cost for per-batch computation

● An additional investigation whether and how variance reduction 

may improve the estimator by importance sampling
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Code Analysis

● The code is tensorflow based implementation

○ link: https://github.com/matenure/FastGCN

● Main training loop

○ Importance sampling

● Main model implementation

○ Sparse matrix operation

● Results

● Execution guide

https://github.com/matenure/FastGCN


Main training loop

● rank: # of samples

● support: normalized 

adj matrix

● q1: sampled indices

● p0: degree



Main training loop

If rank is not given or 

larger than total number 

of nodes

→ Use all samples



Main training loop

If not, sample node indices 

according to distribution 

proportional to degree of 

the nodes. 

: Importance sampling

And then use subset of 

matrix and input features 

corresponding to the 

sampled indices



Main training loop

Finally, with selected 

adjacency matrix 

(normalized) and input 

features, train the model 



Model implementation

● Get preprocessed input features as AX, not just input X

● Use Adam optimizer

● Final output dimension is same as number of class of label



Model implementation

● Model consists of a FC layer 

with relu followed by GCN



Model implementation

● For GCN module, use sparse matrix 

multiplication implemented in 

tensorflow 



Model implementation

● Output probability by 

using softmax

function

● Cross entropy loss for 

multiple-classification 

loss



Results

● Overall score is similar to the 

one reported

● Cora

○ The result for (uni, 50) is far 

lower than reported
■ About 83(%)

● Pubmed

○ Uniform > Importance

● The difference might caused by

○ Different version of package

○ GPU model

Dataset
Sampling 

method

# of 

sample

s

Accuracy
Training time 

(per epoch)

Cora

Uniform
10 77.60 0.0183s

50 68.30 0.0203s

Importance
10 78.30 0.0220s

50 84.70 0.0209s

Pubmed

Uniform
10 85.20 0.2977s

50 86.60 0.3336

Importance
10 82.90 0.2266s

50 86.10 0.2164s



Execution guide

1. docker pull tensorflow/tensorflow:1.4.1-devel-gpu-py3

2. Run the image and attach the created container

3. apt update && apt upgrade -y && apt install git -y

4. git clone https://github.com/matenure/FastGCN.git
a. Dataset in data/ directory (no need to download)

5. pip install networkx==1.11

6. Run code
a. python3 pubmed_Mix_sampleA.py (for importance sampling)

b. python3 pubmed_Mix_uniform.py (for uniform sampling)

c. Change argument of main() function to change # of samples

d. Change FLAG.dataset (line 20) to ‘cora’ or ‘pubmed’

https://github.com/matenure/FastGCN.git

