Predicting Station-level Hourly Demand in a Large-scale bike-sharing Network:
A Graph Convolutional Neural Network Approach

2019-24947
axlg

“* PROBLEM

. _ . . = kaagagle Q, search
« Bike-sharing demand forecasting 99
® Home
7 Compete Bike Sharing Demand
Data (: () .
fm Forecast use of a city bikeshare system
<> Notebooks 3,251 teams - 5 years ago
E] Dpiscuss
Overview Data Notebooks Discussion Leaderboard Rules
©n Courses
: il Overview
Recently Viewed Description Get started on this competition through Kaggle Scripts
Bike Sharing Demand Evaluation Bike sharing systems are a means of renting bicycles where the process
and bike return is automated via a network of kiosk locations throughout
ms M5 Forecasting - Accu... people are able rent a bike from a one location and return it to a differen!

Currently, there are over 500 bike-sharing programs around the world.

oML~ M
Eseou BIKE u:r.g.o|
[2020-S] GCN 2

“* PROBLEM

« Spatiotemporal data analysis via graph

& 4 Node Station
PPl Feature vector of =~ Demand history of

copdied e

Each node Each station

o (depends on user.
o, Edge distance, correlation,
' etc)

>
H

< FRAMEWORK

« A graph convolutional neural network

3.1.1. Spectral convolution on graph
A spectral convolution on the graph is defined as follows:

goxx = Ug.(A)UTx (3)

where g.(A) is a function of the eigenvalues of L.
A form of polynomial filters has been used in a few studies (Defferrard et al., 2016; Kipf and Welling, 2016; Shuman et al., 2013):

K
£s (f\) = 2] ﬁk
zf} ‘ (4)

 In this paper, just use first-order polynomial

To improve the computational efficiency, Kipf and Welling (2016) simplified the calculation of g, +x by using only the first-order
polynomial:

1 1
ge#x = D 2ZAD 2x6 (6)

[2020-S] GCN 4

< FRAMEWORK

« A graph convolutional layer

For the output layer m, the result is:

H™ = D—%AD—%Hm—]H;m (10)

where W™ € RE" €™ are the weight parameters to be learned, and H™ € RN*C"

of the N stations for the next hour when C™ = 1.

are the predictions, e.g., the bike-sharing demand

\

1 1
H™ =D 2AD 2H™1Wwm

‘ »

> We need to pre-define an adjacency matrix.
-> BUT NOT TRIVIAL

[2020-S] GCN 5

< FRAMEWORK

« Some possible adjacency matrix

3.2.1. Spatial distance matrix

L lff DISTE} < Xsp
"7 |oif DIST; > xsp (11

where DIST; is the spatial distance between station i and j, and xsp is a pre-defined SD threshold.

3.2.2. Demand matrix
This approach makes use of the check in and check out station information in the bike-sharing transaction records. The symmetric

demand matrix (DE), which considers the total demand between stations i and j, is built as follows:

DE: — DD& + DDjij i#j
Y ODjotherwise (12)

where ODy; is the aggregated demand from station i to station j.
For the bike-sharing graph network, if the total demand between two stations DEj; is higher than a pre-defined threshold xpg the

two stations are connected. In this way, a binary A can be built such that A; = 1 if DE; > xpg; otherwise A; = 0.

[2020-S] GCN

< FRAMEWORK

Some possible adjacency matrix

3.2.3. Average trip duration matrix
This approach utilizes the trip duration information in the bike-sharing transaction records on the basis of the DE matrix. Each
entry ATDj; in an Average Trip Duration matrix (ATD) is defined as:

ATD; = TTD;/DE; (13)

where TTDjy is the total trip duration of all trips between stations i and j; DEj; is an entry in the DE matrix.
Similarly, a binary adjacency matrix is formed such that A; = 1 if ATD;; < xarp, otherwise A;; = 0. xarp is a pre-defined threshold.

3.2.4. Demand correlation matrix

The Demand Correlation matrix (DC) is defined by calculating the Pearson Correlation Coefficient (PCC) based on the hourly bike
demand series between station i and station j.

DCj = PCC(h;, hj) (14)

where h; and h; are the hourly bike demand series for stations i and j.
In this approach, the bike-sharing graph network is built by connecting two stations with high PCC. Each entry of A is set to 1 if
DCjy = xpc, otherwise A; = 0; where xpc is the DC threshold.

[2020-S] GCN

< FRAMEWORK

« Correlations between stations are not trivial! -> Get it from data!

3.3.1. Data-driven graph filter

The predefinition of the adjacency matrix A is not trivial. The hidden correlations between stations may be heterogeneous. Hence,

it may be hard to encode them using just one kind of metric such as the SD, DE, ATD or DC matrix. Now, suppose the adjacency
~ S T |

matrix A is unknown; let A =D 2AD 2, then (9) becomes:

H' = g (AH-'WY) (15)

where A is called the Data-driven Graph Filter (DDGF) which is a symmetric matrix consisting of trainable filter parameters,
A € R¥N | gl g RNXC

Let DDGF A4 also be learnable parameter !

[2020-S] GCN 8

< FRAMEWORK

« Two deep learning architecture with GCNN-DDGF

— o o e e e e e mmm mmm e o e e ——

/ Convolution

-1
H;

Layer!—1

GCNN with FC layer

- Trainable DDGF
wewnn g Trainable Weight Parameters

S

~
Feedforward

-1

. et

-

e T T

[2020-S] GCN

GCNN with LSTM(RNN)

”
Y4 ht—T+1
]
I &
|
|
: Recurrent |1LST™ Cell S
: A
| i
|
l /77 7 e ~
¥ Axt-T+1 A\
| ~ |
e s s s e s s s s s s s
I _ I
; Convolution 1
| t-T41 :
| xi I
[R |
b oirir \\ :
15 N e |
o Ak X)
l A A |
NN \J /
e - - = - ——

Trainable DDGF

cweengp [TAINable Weight Parameters

—— o m mm om o

o o = =y,

! Feedforward

Predictions

'
]
A

\
1
|
|
1
I
|
1
+ ~
|
1

N

N 7/ !
|
|
|

...... » |LSTM Cell |
|
A
|
|
o — — —— —)I
Axt y
________ -
t
Xi
t TN
X
Y Y— 3
A

\\\ j \\“,

. -~ -

-

“ RESULT

» Forecasting accuracy

Table 3

Model comparison on testing dataset.
Model RMSE RMSE (7:00 AM-9:00 PM) MAE B2
GCNN,..-DDGF 2.12 2.58 1.26 0.75
GCNNo.-DDGF 2.35 2.85 1.43 0.70
XGBoost 2.43 2.95 1.44 0.68
L5TM 2.46 3.00 1.44 0.67
GCNN-DC 2.50 3.02 1.53 0.66
MLP 2.51 3.05 1.51 0.65
GCNN-DE 2.67 3.21 1.60 0.61
SVE-RBF 2.67 3.25 1.57 0.61
LASSC 2.70 3.27 1.65 0.60
SVR-linear 2.72 3.31 1.52 0.59
GCNMN-5D 277 3.31 1.68 0.58
HA 3.44 3.42 2.08 0.35
GCNN-ATD 3.44 3.83 2.21 0.35

v
Pre-defined A
[2020-S] GCN 10

“ RESULT

« Analyze correlations between station

sl
West St By = .
e w"v- Ave & olitan Ave
~ o @mmrvg-- ."""' SR meaitimie aatrs aue
Vesey Pl ’ X P - 'z
"1"'"‘5": St =T <o
Seuth £no Liserty u» — ._.o.-‘ 4 se

O

Geolocation Layout

via A

[2020-S] GCN

- ...'... o o« v1 o e
. e TR e @
" ‘.__.‘“ s SreadudglB W 33 5 —— ‘. &
“""‘" w27 7A"
was .mhlng nSn il :Au.nsa
un“ .,'n“‘., > aaBarelay .-an_‘ x

" = nn“oadw. E 22 5t

@+ porshing

S Ave
o el u st — ey « o 4 ave
s e .nn- -~ E32 “@9 6 Ave Broadw W 24 St
e 7 50 G A e L‘"""""g"‘ st g @ e A O " treae -
b Bronsudgl w aTS¥ E47 St@hrkAvay 51 6 Ave

n..l - EL
ca0 s m B A P <@ comariay .“’“’.‘" [(ETET fu:n ave I
. TR

m-",.g‘.."":. i '—-‘-.06 Lt IO T cidus 31
reag@ :‘:::! e e w"‘fﬁwnm‘”m’h ,:,""-\4 ‘2’.’:‘.. Jime ’.‘&i’"”.‘."_. i
I8 €2 4 2 ave Lﬂa - Jersey St
7 nrnn-k@-h@t Ave T wn.— Frane st ..m‘-—

e @ m'"'wr'..".’. A ,_,“_.““

- & -rafa .tt@& E 8 Sed
e ." ¥ “ E17 5t @uadwl’h—-‘ S
sl gMnive & E 14 St
e W ’m Ave %. LA e s immgy s comects V@ reeeas <
T L5 S @.....—..U.ﬂ‘ Ty 2 ¥ g o "
G*Vs‘m gy T o Sycemtre e)
- Broadw, E14 St 7 Pl T
tu—nn@b st esey er Terrage.. .
o— 1e@ny. ‘W 20 1A ‘tﬁv"ﬁﬂ'@s angST
& o Av .nu _'.:__}4_.- P e A T
--v-@-w_._-r "Ql“'.... “ Grand Army Pl Central Park S
=@ g ave R v s Y o S et S
il -;“0“ - Conire 8¢ ‘nmb-n st
.-
m i G AR o R 1451 & m.nu.- . =
cagge. CormindSPe 6 A5 West St mbors 2 .
- "Wi‘l\lmut &5 -v——-""’“.""‘.'""” -
= T e s "’ 3. 5¢ o TG
R i oid n St Q_gmnl P &6 Ave .
5 D e 2 Av oo
& Christopher reenwich t —
wa s ave s] M ST
iyt = R
ol s '. am ':
s @ Wi o Qo S .

(b)
Force Altas Layout
11

“ RESULT

« DDGEF vs Other affinity matrices

A = The average edge weight is the largest when stations are
0.28 - Community 2 spatially close to each other (0—1 miles)

Community 3

Community 4
0.26

Community 5 = However, there also exist some fluctuations for a few
Community 6 communities.

Community 7
= Community 8

©
N
I

= To some extent, the DDGEF is like the SD ;

Average Edge Weight
o
N
N

0.20{ * -
N 7 AN = However, the DDGF also reveals that the edge weight could
0.18 still be large when two stations are far from each other.
pNG T T - S PR -
0.16 i SN

— = Therefore, the DDGF covers more heterogeneous pairwise
.1 (2 (23 (34 [45 I[56] information than the SD matrix.

Distance (miles)

“ RESULT

« DDGEF vs Other affinity matrices

0.5
Community 1 = The average edge weight is the highest when the demand
--e- Community 2 | . ff . .. h f O 8 1 f ” . h
g Gormmunity correlation coefficient is in the range of [0.8, 1] for all eight
~ Community 4 communities

k= LR Community 5

=) i

S Community 6 .

203 Community 7 = However, for other demand correlation ranges, the average

8 | =¥ Community 8 edge weights are much lower, and the curves are almost

s | x flat.

© 0.2 S

E % e 5

) -‘.X.'..................,.,u.., W . .

3: ' = The correlations between stations based on the DDGF are
0.1 consistent with the DE and the DC matrices to some extent.
L e = However, the nonlinear curves also indicate that the DDGF
"[0.8, 1] [0.6, 0.8) [0.4,'0.6) [0.2,‘0.4) | | | 1

S I L covers more heterogeneous pairwise information than these

matrices.

< CONCLUSION

= A novel GCNN-DDGF model for station-level hourly demand prediction in a large-scale bike-
sharing network

= Automatically capturing heterogeneous pairwise correlations between stations to improve
prediction

= The DDGF not only captures some of the same information existing in the SD, DE and DC
matrices, but also uncovers hidden correlations among stations that are not revealed by any of
these matrices

Thank you for Listening

<+ Reproducing Results : Code

= Original Code from github of author.
= https://qgithub.com/transpaper/GCGRNN

» Dependency in requirements.txt
= |IMPORTANT : tensorflow=1.14.0

= Reproducing Code : github
» https://github.com/kjh6526/GCNfinal GCNNDDGF

= Run main.ijpynb in jupyter notebook / lab.

Graph Convolutional Neural Networks with Data-driven Graph Filter (GCNN-DDGF)

-0- 96 commits ¥ 1branch € 0 packages

3 0 releases

R 1 contributor

Branch: master = New pull request Create new file | Upload files Clone or download ~
31 transpaper update model config file for 15-min dataset Latest commit @7cfcec 6 days ago
B GCNN-DDGF_bike_sharing update README 7 months ago
B GCNN-DDGF_speed_volume update model config file for 15-min dataset 6 days ago
B _pycache__ update 11 menths ago
M data update 15 min data 6 days ago
B results update results 7 months ago
[Rhistory change file direc 7 menths ago
[Download_and_Process_PEMS_traffic_vo.. add info about downloading and processing volume data 7 months ago
[README.md update readme & months ago

] README.md

Graph Convolutional Neural Networks with Data-driven Graph Filter (GCNN-DDGF)

This repository includes the GCNN-DDGF work for the following challenges:

* Network-wide Station-level Bike-Sharing Demand Prediction
e Network-wide Traffic Speed Prediction
s Network-wide Traffic Volume Prediction

Bike-Sharing Demand Prediction

The Bike-sharing demand dataset includes over 28 million bike-sharing transactions between 07/01/2013 and 06/30/2016, which
are downloaded from Citi BSS in New York City. The data is processed as follows:

e For each station, 26304 hourly bike demands are aggregrated based on the bike check-out time and start station in
trasaction records;

e New stations were being set up from 2013 to 2016. Only stations existing in all three years are included;
e Stations with total three-year demand of less than 26304 (less than one bike per hour) are excluded.

After preprocessing, 272 stations are considered in this study. The 272 by 26304 matrix is saved as NYCBikeHourly272.pickle. The
Lat/Lon coordinates of 272 stations are saved in citi_bike_station_locations.csv.

[2020-S] GCN 16

https://github.com/transpaper/GCGRNN
https://github.com/kjh6526/GCNfinal_GCNNDDGF

“* Reproducing Results : main.ipynb
Import Data

file Name = “../data/NYC_Citi bike/MYCBikeHourly272.pickle
fileObject = open(file MName, 'rb')

hourly bike = pickle.load(fileDbject)

hourly bike = pd.DataFrame(hourly bike)

Split Data into Training, Validation and Testing 1

node_num = 272 # node number
feature_in = 24 # number of features at each node, e.g., bike sharing demand from past 24 hours

horizon = 1 # the length to predict, e.g., predict the future one hour bike sharing demand

X _whole
¥_whole

[]
[]

x_offsets = np.sort(
np.concatenate((np.arange(-feature_in+1, 1, 1},))

)
y_offsets = np.sort{np.arange(l, 1+ horizon, 1))

min_t = min{x_offsets))
max_t = hourly bike.shape[@] - abs(max(y_offsets))) # Exclusive

Feature Making

for t in range(min_t, max_t): -
¥_t = hourly_bike.iloc[t + x_offsets, @:node_num].values.flatten
y_t = hourly bike.iloc[t + y_offsets, @:node_num].values.flatten
X_whole.append(x_t)
Y_whole.append(y_t)

)

)

(*F
("F

X _whole = np.stack(X _whole, axis=8)
¥ _whole = np.stack(Y_whole, axis=8)
X whole = np.reshape(X whole, [X whole.shape[@], node num, feature in]} =—

v

17

“* Reproducing Results : main.ipynb

num_samples = X _whole.shape[8] Y
num_train = 28268

num_val = 2288

num_test = 2888

¥_training = X whole[:num_train, :]

¥ _training = ¥_whole[:num_train, :]

shuffle the training dataset
perm = np.arange(X_training.shape[@]) = Split Data for Train / Test / Validation
np.random.shuffle{perm)

¥_training = X_training[perm]
¥ _training = ¥_training[perm]

¥ wval = X whole[num_train:num_train+num_wal, :]
¥ wal = ¥_whole[num_train:num_train+num_wal, :]

X _test = X whole[num_train+num_val:num_train+num_wval+num_test, :]
¥_test

¥ _whole[num_train+num_val:num_train+num_wval+num_test, :] —_—

scaler = Standard5caler({mean=X_training.mean(), std=X_training.std()) =——
X_training = scaler.transform{X_training)
¥ _training = scaler.transform(¥Y_training)
X wval = scaler.transform(X_val) Data Normallzatlon
¥ _wal = scaler.transform(¥Y_wval)

¥_test = scaler.transform(X_t
¥_test = scaler.transform(Y_t

[2020-S] GCN

“* Reproducing Results : main.ipynb

Hyperparameters 1 1 I—1 l
learning rate = 8.81 # Learning rate Hl — U D_EAD_EHZ_IWZ Wl e RC XC
decay = 8.9

batchsize = 188 # batch size

hidden_num_layer = [1@, 18, 28] # determine the number of hidden Layers and the vector length at each node of each hidden Layer Of GCN |ayerS
reg_weight = [@, @, 8] # regularization weights for adjocency matrices L1 loss
[Cy,Cyy .. Cpy .. Cay]

keep = 1 # drop out probability

early stop th = 288 # early stopping threshold, if validation RMSE not dropping im continuous 20 steps, break

training _epochs = 5@@ # total training epochs

Training

start_time = datetime.datetime.now()

val _error, predic_res, test_¥, test _error, bestWeightA = gcnn_ddgf(hidden_num_layer, reg _weight, node_num, feature_in, horizon,
learning_rate, decay, batchsize, keep, early_stop_th, training_epochs,
X_training, Y_training, X _wal, ¥ _wal, X test, Y_test, scaler, 'RMSE')

end_time = datetime.datetime.now()

print(‘'Total training time: °, end_ time-start_time)

[2020-S] GCN 19

“» Reproducing Results : gcn.py

LT
£

21
ey
23
i~y

A
26
o
Ao
28

e
g

=2
L
2
3
= -

=]

ca

[}
[uy Y]

s
) =

Create model
def gcn(signal im, weights hidden, weights A, biases, hidden_num, node num, horizeon):

signal_in = tf.transpose(signal_in, [1, @, 2]} # node_num, ?batch, feature_in
feature_len = signal_in.shape[2] # feoture vector length at the node of the input graph

i=0
while i < hidden_ num:

1 Multiple GCN layers (in while:)

signal_in = tf.reshape(signal_in, [node_num, -1]1) # node_num, batch¥feature_in

Adj = @.5%(weights A['A'+str(i)] + tf.transpose({weights A['A'+str(i)])) > Symmetric Matrix (Aff|n|ty Matrix)
Adj = normalize adj(Ad])

Z = tf.matmul{Adj, signal_in) # node_num, batch¥*feature_in

Z = tf.reshape(Z, [-1, int(feature_len)]) # node_num * batch, fecture_in
tf.add({tf.matmul{Z, weights_hidden['h"+str{i)]), biases['b'+str{i)])
tf.nn.relu(signal output) # node num ¥ batch, hidden vec

signal_output
signal output

i+=1
signal_in = signal_output # the sinal for next layer

feature_len = signal_in.shape[l] # feature vector length at hidden layers
#print (feature Len)

tf.add(tf.matmul{signal output, weights hidden['out']), biases['bout']) # mode nomF batch, horizon
tf.reshape{final_output, [node_num, -1, horizon]) # node_num, batch, horizon
One Fully Connected Layer for output

tf.transpose(final_output, [1, @, 2]) # batch, node_num, horizon
tf.reshape{final_output, [-1, node_num®horizon]) & batch, node_num*horizon

final output
final output
final_output
final_output

return final output

[2020-S] GCN 20

\/
0‘0

Reproducing Results : gcn.py

def gcnn_ddgf(hidden_num_layer, reg_weight, node_num, feature_in, horizon,
learning_rate, decay, batch_size, keep, early stop _th, training_epochs,
X_training, Y_training, X_wal, ¥_val, X_test, ¥Y_test, scaler, criteriom):

n_output_wvec = node_num ¥ horizon # lLength of output vector at the final Layer

early stop _ k = @ # early stop patience
display_step = 1 # frequency of printing results
best wal = 19688

traing_error = @
test_error = @
predic_res [1]
bestlleighta = |

tf.reset_default_graph()

batch_size = batch_sizﬂ

early_stop_th = early_stop_th

training_epochs = training_spochs

tf araph input and output

X = tf.placeholder(tf.float32, [None, node_num, feature_in]) # X is the input signal
¥ = tf.placeholder(tf.float3z, [None, n_output_vec]) # y is the regression output

keep_prob = tf.placeholder(tf.float32) #dropout (keep probability)

define dictionaries to store layers weight & bias

i=o
weights_hidden = {}
weights_& = {}

biases = {}
vec_length = feature_in
while i < len({hidden_num_layer):
weights_hidden['h'+str{i)] = tf.Variable(tf.random_normal([vec_length, hidden_num_layer[i]], stddev=8.5))
biases['b +str{i)] = tf.variable(tf.random normal{[1, hidden_num layer[i]], stddev=8.5))
weights_A['A'+str(i)] = tf.Variable(tf.random_normal([node_num, node_num], stddev=8.5))
vec_length = hidden_num_layer[i]
i+=1

weights_hidden['out'] = tf.variable(tf.random_normal{[hidden_num_layer[-1], horizon], stddev=8.5))

biases['bout’] = tf.variable(tf.random normal({[1, horizon], stddev=8.5)) _

L a

Continued ...

Initialize all network weights.
(Learnable parameters)

21

“» Reproducing Results : gcn.py

1 def gcnn_ddgf(hidden_num_layer, reg weight, node _num, feature in, horizon,

wn

Ln

learning_rate, decay, batch_size, keep, early_stop_th, training_epochs,
X_training, ¥ _training, X wal, ¥ _wval, X test, ¥ test, scaler, criterionm):

wn

Ll # Construct model

5 hidden_num = len{hidden_num_layer)
96 pred = gen(X, weights_hidden, weights_A, biases, hidden_num, node_num, horizon) ' _
o7 pred = scaler.inverse_transform{pred) Deflne the WhOIe GCNN DDGF network'

¥_original = scaler.inverse_transform(Y)

aa if criterion == 'RMSE":

12 cost = tf.sqri(tf.reduce_mean{tf.pow({pred - ¥ _original, 2))) L Set |OSS, regU|arizer, Optimizer.
a2 elif criterion == "MAE':

@3 cost = masked_mas_tf({pred, ¥ original, @)

a4 else:

85 print ('Please choose evaluation criterion from RMSE, MAE or MAPE!")

86 sys.exit()

a8 # regularization

& i=2a

114 while 1 <« len{reg_weight):

111 cost += reg_weight[i]®tf.reduce_sum{tf.abs{weights_A["A"+str(i}]))

112 i+=1

113

114 #optimizer = tf.train.AMSPropOptimizer(learning rate, decay).minimize(cost)

115 optimizer = tf.train.fdamOptimizer(learning_rate=learning_rate).minimize{cost) —
116

117 # Initiglizing the variables

118 init = tf.global variables initislizer()

119 saver = tf.train.saver()

Continued ...

[2020-S] GCN

“* Reproducing Results : gcn.py

def gcnn_ddgf(hidden_num_layer, reg weight, node_num, feature_in, horizon,

wn

Ln

learning_rate, decay, batch_size, keep, early_stop_th, training_epochs,
X_training, ¥ _training, X wal, ¥ _wval, X test, ¥ test, scaler, criterionm):

.

with tf.Session() as sess:
sess.run{init)

for epoch in range(training_epochs):

avg_cost = @.
num_train = X_training.shape[@]
total_batch = int{num_train/batch_size)

for i in range(total_ batch):
_s € = sess.run([optimizer, cost], feed_dict={X: X_training[i*batch_size:(i+1)*batch_size,],
¥: ¥Y_training[i®batch_size:(i+1)*batch_size,],
keep_prob: keep})

avg _cost += ¢ ¥ batch_size #/ total batch

rest part of training dotaset >_ BatCh Tralnlng

if total_batch * batch_size != num_train:
_s € = sess.run([optimizer, cost], feed dict={X: X_training[total_batch*batch_size:num_train,],
¥: Y_training[total_batch*batch_size:num_train,],
keep_prob: keepl)
avg_cost += ¢ ¥ (num_train - total_batch®batch_size)

__/
avg_cost = avg_cost / num_train
#Display logs per epoch step
if epoch % display_step == 8:
print {"Epoch:”, '¥@4d’ % (epoch+l), "Training " + criterion+ ™ =", “{:.9f}" . format (avg_cost))

validation

c_val = sess.run{[cost], feed dict={X: X val, ¥: ¥ _val, keep_prob:1})

e Calculate Val, Test loss
print{"validation
testing

c_tes, preds, Y_true, weights_A_final = sess.run([cost, pred, Y_original, weights_A], feed_dict={X: X_test,¥: ¥_test, keep_prob: 1})

+ criterion+":", c_wval)

Continued ...

[2020-S] GCN 23

“* Reproducing Results : gcn.py

def gcnn_ddgf(hidden_num_layer, reg weight, node_num, feature_in, horizon,

wn

Ln

learning_rate, decay, batch_size, keep, early_stop_th, training_epochs,
X_training, ¥ _training, X wal, ¥ _wval, X test, ¥ test, scaler, criterionm):

wn

.

158 if c¢_val < best_wval: —_—
159 best wval = c_wal

166 # save model

161 #saver.save(sess, './bikesharing genn ddgf')

162 test_error = c_tes

163 traing_error = avg_cost

164 predic_res = preds

165 bestWeighta = weights_A final

166 early _stop k = @ # reset to & — Stopp”’]g C”ter'a
163

168 # update early stopping patience

169 if c¢_val »= best_wal:

17 early stop k += 1

171

172 # threshold

173 if early_stop_k == early_stop_th:

174 break -
176

177 print("epoch is ", epoch)

178 print{"training " + criterion +" is ", traing_error)

179 print("Optimization Finished! the lowest walidation " + criterien + " is ", best_wal)
138 print({"The test " + criterion + " is ", test_error)

181

182 #test ¥ = ¥_test

183 #test_error = np.sgrt(test_error)

184 return best_val, predic_res,¥Y_true,test_error, bestlWeighta

185

[2020-S] GCN

24

“* Reproducing Results : Run main.ipynb

[7]:

Training 1

start_time = datetime.datetime.now()

val_error, predic_res, test_¥, test_error, bestWeightd = gcnn_ddgf(hidden_num_layer, reg_weight, node_num, feature_in, horizon,
learning_rate, decay, batchsize, keep, early_stop_th, training_epochs,
X_training, ¥Y_training, X_val, ¥_val, X_test, Y_test, scaler,

end_time = datetime.datetime.now()
print{ 'Total training time: ', end_time-start_time)

Epoch: @881 Training RMSE = 3.93B6679145
Validation RMSE: 3.6874350

Epoch: @862 Training RMSE = 3.422823801
Walidation RMSE: 3.623373
Epoch: @863 Training RMSE = 3.195217954
Validation RMSE: 3.588453
Epoch: ee84 Training RMSE = 2.18@3732487
Validation RMSE: 3.5189@42
Epoch: @885 Training RMSE = 3.0@56849792

Validation RMSE: 3.47858627

Epoch: €498 Training RMSE = 2.5B852408%53

Validation RMSE: 2.98524%9

Epoch: 8499 Training RMSE = 2.584983015

Validation RMSE: 2.984735

Epoch: 2588 Training RMSE = 2.584538321

Validation RMSE: 2.9847744

epoch is 499

training RMSE is 2.597171832033386

Optimization Finished! the lowest wvalidation RMSE is

2.59713192

"RMSE')

Table 3

Model comparison on testing dataset.
Model RMSE RMSE (7:00 AM-9:00 PM) MAE R
GCNN,..-DDGF 212 2.58 1.26 0.75
GCNN,e-DDGF 2.35 2.85 1.43 0.70
XGBoost 2,43 2.95 1.44 0.68
LSTM 246 3.00 1.44 0.67
GCNN-DC 2,50 3.02 1.53 0.66
MLP 2,51 3.05 1.51 0.65
GCNN-DE 2.67 3.21 1.60 0.61
SVR-RBF 2.67 3.25 1.57 0.61
LASSO 2.70 3.27 1.65 0.60
SVR-linear 2,72 3.31 1.52 0.59
GCNN-5D 277 3.31 1.68 0.58
HA 3.44 3.42 2.08 0.35
GCNN-ATD 3.44 3.83 2.21 0.35

The test RMSE is 2.3411546
Total training time: ©:85:43.9B88986

[2020-S] GCN

25

\/
0‘0

(8]:

Reproducing Results : Run main.ipynb

idx = 8 # Node(Station) index
plt.figure(figsize=(21, 7))

plt.plot({predic_res[:, idx], label="prediction"} o ng
plt.plot(test_¥[:, idx], label="GT") PredICtlon ReSUIt PlOt

plt.xlim(24%5, 24%15)
plt.ylim({-2,35)

plt.xlabel(' time{hour)")
plt.ylabel("'demand’)
plt.legend()

plt.grid()

plt.show()

40

— prediction |
— GT

dermand

A 11 P AT AT A 11N

i —————

T
0 250 500 750 1000 1250
time{hour)

[2020-S] GCN

1500

1750 2000

26

<+ Reproducing Results : Plot the prediction result

| 1Y 1, 1| ‘ (AR '!J
l ; h B !) il H
- .
l “ | N i
\k ’A N "\/ " “‘ /"} H'k_, ! '\u "\\ ,Fl \‘\hJ\u J"“'\t \

ﬁﬁﬁﬁﬁﬁﬁﬁﬁ

[2020-S] GCN

27

