Geometric Graph Convolutional Neural
Networks

Bong Jun Lee
Seoul National University

Geometric Graph Convolutional Neural Networks
Przemystaw Spurek, Tomasz Danel, Jacek Tabor, Marek $mieja, tukasz Struski, Agnieszka Stowik, tukasz Maziarka

https://arxiv.org/abs/1909.05310

Geometric Deep Learning: geo-GCN

» How to use geomeltric features (spatial coordinates) in GCNs
= A proper generalization of GCNs and CNNs

* Perform graph augmentation, which further improves performance of
the model

Elastic Deformation

J. Y. Choi. SNU 3

P— @ PyTorch

Datasets

Superpixels

* Provide an efficient low/mid-level
representation of image data, which
greatly reduces the number of image
primitives for subsequent vision tasks.

= Vertices correspond to (super)pixels
and edges represent their spatial
relations

» Each image is represented as an
embedded graph of 75 nodes
defining the centroids of superpixels

Regular grid

Image Segmented Labels

Superpixel Sampling Networks Varun Jampani, Deqging Sun, Ming-Yu Liu, Ming-Hsuan Yang, Jan Kautz 4

Formalization of geo-GCN

 Assume each node v; is additionally identified with its coordinates p; € RT

— |\
Ry(u,b) = zjewp\Rew,_(p; — i) @@
where u € R',b € R are trainable

e LetU = [uq,...,ux] and b = [bq, ..., by] define k-filters
« The intermediate representation h; is a vector defined by:

i_li — [Ei(ulrbl)l "'l}_li(ukr bk)]

IMLP (H; W) = ReLU(WTH + b))

J. Y. Choi. SNU

Theoretical Analysis of geo-GCN

* Theorem

* Let M = [myrjr]yr jre(_k.ky D€ @ given convolutional mask

« Let n = (2k + 1)? (number of elements of M)

« Then there exist u € R?, b4, ...,b, € R and w € R? such that

n
M=xH = Zwiﬁ(u»bi)
i=1

H M G

J. Y. Choi. SNU

Theoretical Analysis of geo-GCN

* Proof

 Let P c R? denote all possible positions in the mask M,i.e. P = [i'j

k}

- Let u € R? denote an arbitrary vector which is not orthogonal to any element

from P — P. Then
|qu +ulgforp,q € P,p #q |
Consequently, we may order the elements of P so that u’p,>...> ulp,.
Let M; denote the convolutional mask, which has value one at the position p;,and
zero otherwise.
Now we can choose arbitrary b; such that
|bl-E (—qul-, —uT piyq) fori=1..n—1, bn>—um

for example b; = —uT — : —= fori <n,b,>—uTp, +1

Then observe that

J. Y. Choi. SNU ;

Theoretical Analysis of geo-GCN (cont.)

H(u, b)) = (u'py + by) - M; xH
H(u, by) = (u'py + by) - My + (u'py + by) - My + H
» and generally for every k = 1..n we get
|H(u, by) = T (uTp; + by) - M; * H|
« where all the coefficients in the above sum are strictly positive. Conseque

ntly,
_ H(w by) N e
M, * H= v — F MxH = iZlWlH(u, b;)

- and we obtain recursively that
T
Micx H= o HCu, b = o SIS @ py+bi) - My« H |

* which trivially implies that every convolution My * H can be obtained as a
linear combination of H(u, b;);=1 &

J. Y. Choi. SNU

Experiment Result #1

* Image graph classification

= Grid: regular grid with connections between adjacent pixels which have 2-
dimensional location, and it is characterized by a 1- dimensional pixel
Intensity.

= Superpixels: irregular grid consisting of 75 superpixels, where the edges are
determined by spatial relations between nodes using k-nearest neighbors.

Table 1: Classification accuracy on two graph representa-

tions of MNIST.
Method Grid Superpixels
ChebNet 09.14% 75.62%
MoNet 99.19% 01.11%
SplineCNN 99.22% 95.22%
geo-GCN 05.95%

J. Y. Choi. SNU

Experiment Result #2

» Incomplete image classification

« MNIST dataset, where a square patch of the size 13x13 was removed from
each image

« The location of the patch was uniformly sampled for each image
 Imputation Methods

mean: Missing features were replaced with mean values of those features computed
for all (incomplete) training samples.

k-nn: Missing attributes were filled with mean values of those features computed fro

m the k nearest training samples (we used K = 5). Neighborhood was measured usin
g Euclidean distance in the subspace of observed features.

« mice: This method fills absent pixels in an iterative process using Multiple Imputation
by Chained Equation (mice), where several imputations are drawing from the conditi
onal distribution of data by Markov chain Monte Carlo techniques

J. Y. Choi. SNU 10

Experiment Result #2 (cont.)

» Incomplete image classification

Table 2: Classification accuracy of graph representations of
incomplete MNIST images.

Method Accuracy
FCNet + mean 87.59%
FCNet + k-NN 87.10%
FCNet + mice 88.59%

ConvNet + mean 90.95%
ConvNet + k-NN 90.67%
ConvNet + mice 92.10%

geo-GCN | 92.40% I

J. Y. Choi. SNU 11

Experiment Result #3

= _earning from molecules

e 3 datasets from MoleculeNet

 Blood-Brain Barrier Permeability (BBBP) is a binary classification task of predicting wh
ether or not a given compound is able to pass through the barrier between blood a
nd the brain, allowing the drug to impact the central nervous system. The ability of a
molecule to penetrate this border depends on many different properties such as lipo
philicity, molecule size, and its flexibility.

« Another 2 datasets, ESOL and FreeSolv, are solubility prediction tasks with continuou

S targets.

Method BBBP ESOL FreeSoly
SVM 0.603 4 0.000 0.493 £+ 0.000 0.391 + 0.000
RF 0.551 +0.005 0.533 +£0.003 0.550 + 0.004
GC 0.690 + 0.015 0334 +£0.017 0.336 + 0.043
Weave 0.703 +0.012 0.389 + 0.045 0.403 + 0.035
MPNN 0.700 +0.019 0303 £0.012 0.299 + 0.038
EAGCN 0.664 +0.007 0.459 +0.019 0410 +0.014
pos-GCN 0.696 4 0.008 0301 £0.011 0.278 + 0.024
geo-GCN |n.?43 +0.004 0.270 £+ 0.005 0.299 + u.u33|

J. Y. Choi. SNU

Ablation study of the data augmentation

* Removing predicted positions, and thus setting all positional vectors to ze
ro in hy(u,b) = X ey, ReLU(u" Gor—pr)+ b)h;

« The outcome of augmenting the data with random rotations and 30 predi
cted molecule conformations

BREBP FREESOLW N ESOL

ALC
RMSE

ae

I Dataset, l }
.

. . . P |] h b 5 o b B b
B Datasefjwith positions and conformations F .. g;_ﬁ. ii‘ﬁ_ Fﬂ}vff@%f F o “‘i" fﬁ“&#ﬁn“

. - . . g & & o

P - T . A oo o ol il e T Y

Bm Datasefjwith positions and rotations and conformations & & ,{\Iﬁgtu&ﬁf‘:@ F AP F L EEFS

2 | ‘\-".-".l‘-"‘:-"l'-"'\-'b‘-‘l'b'\-{l.-.\?.l.\"l %%%%%%%
vvvvvvvvvvv

J. Y. Choi. SNU 13

Thank you

User Guide & Reproduction

15

How to Set Up: Source Code

geo-GCN
= |nstall anaconda environment

* Download the official implementation of t
he geo-GCN architecture made by autho
.

= $ git_tclone https://github.com/gmum/geo-g
cn.qi

* Go to the src directory and edit environm
ent.yml as follows

» - python=3.8.2=h9d8afe 1 cpython
= + python

= Create a new environment
= $ conda env create -f environment.yml|

= Activate geogcn environment
= $ conda activate geogcn

The official implementation of the geo-GCN architecture.

convolutional-neural-networks graph-convolutional-networks missing-data cheminformatics

< 6 commi ts 9 1branch 10 packages © 0 releases A4 1 contributor g MIT

Branch: master v Find file

Latest commit e3c7c43 on Mar 3

mokosaur Update environment

data/maolecules Add chemical data ths ago
Add chemical data ths ago

[E) LICENSE Initial commit & months ago
[E READMEmd Add chemical data ths ago
[E) environmentyml Update environment ths ago

README.md

Geometric Graph Convolutional Neural Networks

This repository contains an implementation of Geometric Graph Convolutional Neural Networks(geo-GCN).

link: https://github.com/gmum/geo-gcn

16

https://github.com/gmum/geo-gcn.git
https://github.com/gmum/geo-gcn

How to Set Up: Extension Library

@ PyTorch

geometric

Geometric Deep Learning Extension Library for PyTorch https://pytorch-geometric.readthedocs...

pytorch geometric-deep-learning graph-neural-networks

pytorch_geometric

- ViSit the exte nSion I i brary We b pag e o 3,055 commits ¥ 6 branches [0 packages © 18 releases 28 75 contributors gfs MIT
= https://github.com/rusty1s/pytorch geometric banch master - Fn e
» Check pytorch version and set variable as fool ey X s e
| .github/ISSUE_TEMPLATE grammar 12 months ago

OwWS

= $ python -c “import torch; print(torch.__version__)” o o o
- $ export CU DA:CU92 B docker Add installation of dependencies last month

Il docs scikit-image is now an optional dependency 12 days ago

» |nstall pytorch_geometric extension following th ...
e instruction based on pytorch version -

Bl test change order in which GAT attention and edges are returned 6 days ago

= $ pip install torch-scatter==latest+${CUDA} -f https:
//pytorch-geometric.com/whl/torch-1.4.0.html

= $ pip install torch-sparse==latest+${CUDA} -f https:
//pytorch-geometric.com/whl/torch-1.4.0.html

= $ pip install torch-cluster==latest+${CUDA} -f https:
//pytorch-geometric.com/whl/torch-1.4.0.html

$ Pip install torch-spline-conv==latest+${CUDA} -f
https://pytorch-geometric.com/whl/torch-1.4.0.html

$ pip install torch-geometric

| torch_geometric
El .coveragerc

[E] .gitignore

E) .styleyapf

E] .travis.yml

E] CONTRIBUTING.md
Bl LICENSE

El MANIFEST.in

E] README.md

[E| readthedocs.yml
E| setup.cfg

El setun.ov

geddataset fix

first io package contribution

small changes to the tensorboard example
style guide

scikit-image is now an optional dependency
Fix typos

year up

update manifest

added meta path to readme

optional torch-cluster

codecov

Merae pull request #1211 fram Nvuten/schnet

5 days ago

8 months ago
3 months ago
11 months ago
12 days ago
10 months ago
4 months ago
2 months ago
6 days ago

3 months ago
11 months ago

10 davs ano

https://github.com/rusty1s/pytorch_geometric

How to Run & Reproducing Result (Superpixels)

Execution of the source code

* Run geo-GCN on MNISTSuperpixels
with default parameters

= $ python train_models.py MNISTSuperp
Ixels

» [note] other options are not available in t
he official github except ‘"MNISTSuperpixel
S

Reproducing Result

» The result outputs with ‘Loss’, ‘Train
Acc’, ‘Test AcC’

Reproducing Output

Epoch:
Epoch:
Epoch:
Epoch:
Epoch:
Epoch:
Epoch:
Epoch:
Epoch:
Epoch:

Epoch:
Epoch:
Epoch:
Epoch:
Epoch:
Epoch:
Epoch:
Epoch:
Epoch:
Epoch:

001,
002,
003,
004,
005,
006,
007,
008,
009,
010,

090,
091,
092,
093,
094,
095,
096,
097,
098,
099,

Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:

Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:
Loss:

6.06750,
2.30311,
2.30176,
2.30125,
2.30138,
2.30143,
2.30123,
2.30128,
2.30131,
2.30144,

2.30123,
2.30124,
2.30124,
2.30124,
2.30123,
2.30124,
2.30124,
2.30123,
2.30123,
2.30123,

Train Acc
Train Acc
Train Acc
Train Acc
Train Acc
Train Acc
Train Acc
Train Acc
Train Acc
Train Acc

Train Acc
Train Acc
Train Acc
Train Acc
Train Acc
Train Acc
Train Acc
Train Acc
Train Acc
Train Acc

:0.11232,
»0.11235,
:0.11237,
:0.11237,
:0.11237,
:0.11237,
:0.11237,
:0.11237,
:0.11237,
:0.11237,

:0.11237,
:0.11237,
:0.11237,
:0.11237,
:0.11237,
:0.11237,
:0.11237,
:0.11237,
:0.11237,
:0.11237,

Test Acc
Test Acc
Test Acc
Test Acc
Test Acc
Test Acc
Test Acc
Test Acc
Test Acc
Test Acc

Test Acc
Test Acc
Test Acc
Test Acc
Test Acc
Test Acc
Test Acc
Test Acc
Test Acc
Test Acc

:0.11340
:0.11350
:0.11350
:0.11350
:0.11350
:0.11350
:0.11350
:0.11350
:0.11350
:0.11350

:0.11350
:0.11350
:0.11350
:0.11350
:0.11350
:0.11350
:0.11350
:0.11350
:0.11350
:0.11350

Code Structure: Flow

geo-GCN
pytorch_geometric

train_models.py || R

GeoGC DatalLoader MNISTSuperpixels

architectures

torch_geometric.data torch_geometric.datasets

: graclus, max_pool,
normalized_cut_2d GraphConv global_mean_pool

normalized_cut 2d MessagePassmg:

graph_conv torch_geometric.nn

normalized_cut add_self_loops

torch_geometric.utils

19

Code Structure: GeoGC

graph_conv GraphConv
normalized_cut_2d normalized_cut_2d
torch_geometric.nn graclus, max_pool, global mean_pool

GeoGC(torch.nn.Module):
(dim_coor, out_dim, input_features
layers_num, model_dim, out_channels_1, dropout
use_cluster_pooling):

'--
| .conv_layers = [GraphConv(=dim_coor :
|

| =dropout)] + \ |
| [GraphConv (=dim_coor Graph COﬂV Layers :
|

| =dropout) _ (layers_num - 1)] 1
h---I

.fcl = torch.nn.Linear(model _dim, out_dim) |
forward (data):

i (.layers_num):

data.x = .conv_layers[i](data.x, data.pos, data.edge index)

.use_cluster_pooling:
weight = normalized cut_2d(data.edge_index, data.pos)
cluster = graclus(data.edge index, weight, data.x.size(©@))
data = max_pool(cluster, data =T.Cartesian(=))

data.x = global mean_pool(data.x, data.batch)
X = .fcl(data.x)

F.log softmax(x =il))

Code Structure: GraphConv

GraphConv(MessagePassing):
¢ coors, out_channels_1, out_features, label dim= dropout=0):

(GraphConv). ¢ =)

.1lin_in = torch.nn.Linear(coors, label dim * out_channels 1)
.1lin_out = torch.nn.Linear(label dim * out_channels_1, out features)
.dropout = dropout

forward (X, pos, edge index):
edge_index, _ = add_self loops(edge index =x.size(0))
.propagate(=edge_index, x=x =pos =)

message (pos_i, pos_j, X_j):
I---1
| tmp = pos_j - pos_i I
| L = .lin_in(tmp)
| num_nodes, label dim = (x_j.size()) COﬂVOlUtIOﬂ MaSk M :
| label dim _out_channels 1 = (L.size())[1] I
T I I L L L LI I L LI LI L L L L L e L L L LI L L L e L L L L L L I L L L L L I I L L L L L L L L L L L L L L
I X = F.relu(L) |
| Y = 3] i
1 X = torch.t(X) 1
1 X = F.dropout(X, p= .dropout = .training) NN 1
1 result = torch.t(1
1 (X.view(label dim, - num_nodes) * torch.t(Y).unsqueeze(1l)).reshape(label dim out channels 1, num_nodes)) 1
L result i

update(aggr_out):

aggr_out = .lin_out(aggr_out)

aggr out = F.relu(aggr_out)

aggr out = F.dropout(aggr out = .dropout = .training)

aggr_out

Appendix

22

pytorch_geometric

PyTorch Geometric (PyG) Is a geometric d
eep learning extension library for PyTorch.

» Various methods for deep learning on gr
aphs and other irregular structures, also
known as geometric deep learning, from
a variety of published papers

= An easy-to-use mini-batch loader for ma
ny small and single giant graphs, multi g
pu-support, a large number of common b
enchmark datasets (based on simple int
erfaces to create your own), and helpful t
ransforms, both for learning on arbitrary
graphs as well as on 3D meshes or point
clouds.

@ PyTorch

geometric

SplineConv from Fey et al: SplineCNN: Fast Geometric Deep Learning with Continuous B-Spline Kernels (CVPR 2018)
GCNConv from Kipf and Welling: Semi-Supervised Classification with Graph Convolutional Networks (ICLR 2017)
ChebConv from Defferrard et al.: Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering (NIPS 2016)
NNConv from Gilmer et al.: Neural Message Passing for Quantum Chemistry (ICML 2017)

CGConv from Xie and Grossman: Crystal Graph Convolutional Neural Networks for an Accurate and Interpretable Prediction
of Material Properties (Physical Review Letters 120, 2018)

ECConv from Simonovsky and Kemedakis: Edge-Conditioned Convelution on Graphs (CVPR 2017)

GATConv from Veli¢kovi€ et al: Graph Attention Networks (ICLR 2018)

SAGEConv from Hamilton et al.: Inductive Representation Learning on Large Graphs (NIPS 2017)

GraphConv from, e.g., Morris et al.: Weisfeiler and Leman Go Neural: Higher-order Graph Neural Networks (AAAI 2019)
GatedGraphConv from Li et al.: Gated Graph Sequence Neural Networks (ICLR 2016)

GINConv from Xu et al: How Powerful are Graph Neural Networks? (ICLR 2019)

GINEConv from Wu et al.: Strategies for Pre-training Graph Neural Networks (ICLR 2020)

ARMAConv from Bianchi et al.: Graph Neural Networks with Convelutional ARMA Filters (CoRR 2019)

SGConv from Wu et al.: Simplifying Graph Convolutional Networks (CoRR 2019)

e APPNP from Klicpera et al: Predict then Propagate: Graph Neural Netwarks meet Personalized PageRank (ICLR 2019)

AGNNConv from Thekumparampil et al.: Attention-based Graph Neural Network for Semi-Supervised Learning (CoRR 2017)
TAGConv from Du et al.: Topology Adaptive Graph Convolutional Networks (CoRR 2017)

RGCNConv from Schlichtkrull et al.: Modeling Relational Data with Graph Convolutional Networks (ESWC 2018)
SignedConv from Derr et al.: Signed Graph Convolutional Network (ICDM 2018)

DNAConv from Fey: Just Jump: Dynamic Neighborhood Aggregation in Graph Neural Networks (ICLR-W 2019)

EdgeConv from Wang et al.: Dynamic Graph CNN for Learning on Point Clouds (CoRR, 2018)

* PointConv (including Iterative Farthest Point Sampling, dynamic graph generation based on nearest neighbor or maximum

distance, and k-NN interpolation for upsampling) from Qi et al: PointNet: Deep Learning on Point Sets for 3D Classification
and Segmentation (CYPR 2017) and PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space (NIPS
2017)

XConv from Li et al: PointCNN: Convolution On X-Transformed Points (official implementation) (NeurlPS 2018)

PPFConv from Deng et al.: PPFNet: Global Context Aware Local Features for Robust 3D Point Matching (CVPR 2018)
GMMConv from Monti et al: Geometric Deep Learning on Graphs and Manifolds using Mixture Model CNNs (CVPR 2017)
FeaStConv from Verma et al.: FeaStNet: Feature-Steered Graph Convolutions for 3D Shape Analysis (CVPR 2018)
HypergraphConv from Bai et al.: Hypergraph Convelution and Hypergraph Attention (CoRR 2019)

GravNetConv from Qasim et al.: Learning Representations of Irregular Particle-detector Geometry with Distance-weighted
Graph Networks (European Physics Journal C, 2019)

A Metalayer for building any kind of graph network similar to the TensorFlow Graph Nets library from Battaglia et al.:

