Few-Shot Learning with Graph Neural Networks

Jonggwon Park
Seoul National University

Few-Shot Learning with Graph Neural Networks

* International Conference on Learning Representations (ICLR) 2018
= Authors : Victor Garcia, Joan Bruna

* In this paper, end-to-end learning methods of few-shot learning and semi-
supervised learning were proposed using graph neural networks (GNN).

* |t showed state of the art performance in few-shot learning.

J. Y. Choi. SNU

Problem Set-up

= |[nput-output pairs : (T;,Y;); ~ P, P : partially-labeled image collections
T = {{(x1' ll)' (xSI lS)}r {flr ---;fr}: {flr rft}r li € {17 K}; xi; f]r:)zj NPZ(RN)})
Y = (ylr '"ryt) € {11K}t
s : the number of labeled samples
r . the number of unlabeled samples
t . the number of samples to classify, t = 1 only in this paper

K : the number of classes
p;(RN) : class-specific image distribution over RY

The standard supervised learning objective

1
min—z L(D(T;, 6),Y)) + R(6)
6 L i<L

o(T,0) =p¥lm)
R : standard regularization objective

Few-shot learning : r =0, t =1, s = gK (each label appears exactly g times) => g-shot, K-way
learning

Semi-supervised learning : r>0,t =1

Active learning : the learner has the ability to request labels from the sub-collection {X,, ..., X,-}
J. Y. Choi. SNU

Graph Representations

= The input T is represented with a fully-connected graph G; = (V, E) where
nodes v, € V correspond to the images in T (both labeled and unlabeled)

» Graph Neural Networks

= An input signal F € RV*? on the vertices of a weighted graph G

» A : afamily of graph intrinsic linear operator
ex) adjacency operator A : F — A(F) where (AF); = %;;w; jFj,withi ~j

iff (i,j) € E and w; ; its associated weight
= GNN layer Gc(-) receives as input a signal x* € R"*% and produce x**! € RV*%k+1
xk*1 = Ge(xk) = ’0(2 Bx*k6k) where © = {6, ...,e{qu}k,eg € R%k*dk+1
BEA

J. Y. Choi. SNU

Graph Representations

» Edge features
= Edge features A* from the current node hidden representation
A, = g(xk,) = MLPg (abs(xf - xf))
= @7 Is a distance metric : Symmetry ¢z(a, b) = @z(b,a), Identity ¢z(a,a) =0
= This trainable adjacency is normalized using a softmax along each row
= Update rules for node features : applying GNN(Gc) with the generator family A = {4, 1}

= |nitial node features

= For images x; € T with known label [;, initial node feature x? = (b (x;), h(1;))
where ¢ is a CNN and h(l) € RX is a one-hot encoding of the label

= Forimages %;, ¥; with unknown label [;, h(l) is replaced with the uniform distribution over
the K-simplex (K ~11y)

J. Y. Choi. SNU

Model

J. Y. Choi. SNU

V (nodes)

1.1) A Matrix T ¥

2

x

2X

AR)

Fc-Layer(1)

Fc-Layer(nf), Batch
Norm., Leaky Relu

Fc-Layer(nf*2), Batch
Norm, Leaky Relu

abs(xgk) - x§k))

{r

X9, <9

/

block-k

A®

Vi =[x, x®

p k1) — [x(1k+l)‘x(k+l).

k+1
3xf.VJ')

L)

Graph conv block

H 4

V'(k) Ak

k k
1,] = ‘pé(xs)!x())

)
\
\
]
)
|
v
\
)
1
j |
1
1
1 \
\
\
(k) L}
S yeess XN | :
|
\

‘* v (k+1)
1.2) Ge block

Concatenate -

Batch Norm, Leaky
Relu

Graph Convolution(48)

Training

* Few-shot and semi-supervised learning
= The model is asked only to predict the label Y corresponding to the

Image to classify x € T, associated with node * in the graph

= Cross-entropy loss

L(D(T;6),Y) = = > yilogP(Y. = yIT)

= Active learning

The model has the intrinsic ability to query for one of the labels from {%,, ..., %,-}
The querying is done after the first layer of the GNN
Attention = Softmax(g(x(;), g(x!) € R, g is parametrized by neural network

at test time keep the maximum value, at train time randomly sample one value based on
its multinomial probability => the label of the queried vector h(l;,) is obtained

This value is summed to the current representation

xi = [Gc(x?*),xio* = [Gc(xio*), (d(x;.), h(1;)]

This attention part is trained end-to-end by backpropagating the loss

J. Y. Choi. SNU

i 2

=
>
Q9
.....jﬁ f:\;;i';;._::O
N
Graph Conv
()
S TJO‘
\JO
A = wax” ") ‘
Q@
CO .
Graph Conv
[3 Q
G-9®

Hises

V(nodes)

Experiments

= Mini-Imagenet dataset
= 84 X 84 RGB images from 100 different classes with 600 samples per class
= Split based on class : 64 classes for training, 16 for validation, 20 for testing

* The embedding architecture for initial node features

= {3x3-conv. layer (64 filters), batch normalization, max pool(2, 2), leaky relu},
{3x3-conv. layer (96 filters), batch normalization, max pool(2, 2), leaky relu},
{3x3-conv. layer (128 filters), batch normalization, max pool(2, 2), leaky relu, dropout(0.5)},
{3x3-conv. layer (256 filters), batch normalization, max pool(2, 2), leaky relu, dropout(0.5)},
{fc-layer (128 filters), batch normalization}

J. Y. Choi. SNU

Experiments

* Few-shot learning accuracy

= TCML performed better, but has a much more complex embedding network.
= TCML(~11M) has more parameters than 3 layer GNN(~400K)

5-Way

Model 1-shot S-shot
Matching Networks vinyals et al. (2016) 43.6% 535.3%
Prototypical Networks Snell et al. (2017) 46.61% £0.78% 65.77% £0.70%
Model Agnostic Meta-learner Finnetal 2017) 48.70% £1.84% 63.1% £0.92%
Meta Networks Munkhdalai & Yu (2017) 49.21% +0.96 -

Ravi & Larochelle Ravi & Larochelle (2016) 43.4% +0.77T% 60.2% +0.71%
TCML Mishra et al. (2017) 55.71% +0.99% 68.88% +0.92%
Our metric learning + KNN 49.44% +0.28% 64.02% 4+0.51%
Our GNN 50.33% +0.36% 66.41% +0.63%

J. Y. Choi. SNU

Experiments

= Semi-supervised accuracy
» Trained only with labeled means experimenting with ignoring unlabeled images
* In the semi supervised setting, unlabeled images were also constructed as a graph
» using unlabeled images helps to classify test image

S5-Way S-shot
Model 20% -labeled 40 Y% -labeled 100 % -labeled
GNN - Trained only with labeled 50.33% +0.36% 56.91% 4+0.42% 66.41% +0.63%
GNN - Semi supervised 52.45% +0.88% 58.76% +0.86% 66.41% +0.63%

J. Y. Choi. SNU

10

Experiments

= Active learning

* The network query for the label of one sample from the unlabeled ones
» Random baseline : the network chooses a random sample to be labeled

» Performance improvement with AL : GNN manages to correctly choose a more informative
sample than a random one

Method S5-Way S-shot 20%-labeled
GNN - AL 55.99% +1.35%
GNN - Random 52.56% +1.18%

J. Y. Choi. SNU

Conclusions

= This paper explored graph neural representations for few-shot,
semi-supervised and active learning

= The graph formulation is helpful to unify several training setups
(few-shot, active, semi-supervised) under the same framework

J. Y. Choi. SNU

12

29 g4
» =21} &S Mini-Imagenet dataset2 2 Aot A1}

5-way 1-shot 5-way 5-shot 5-way 5-shot
20% labeled

50.107 % 66.000 % 50.923 %

= semi-supervised A| & (5-way 5-shot 20% labeled)2| 4-50]| 5-way 1-shot M| &
Off =I5l ZA 7H“E|7(| H=
= Ol= =0 7|Z =l semi-supervised M 22| H&(52.45%)0| 2 A & O|X|= &

2
o
= Few-shot learning?| ds2 =&0| 7|5 = Al FAISIAS

J. Y. Choi. SNU 13

IE X=
= M|& ZE Github & : https://github.com/jayg996/few-shot-gnn
» Sl ZEES ZHESIYRF

J. Y. Choi.

Ii E = Pytorch {0 0.3.101 A WX RUOIA, 1.3.08 0|

T2 Variable A5t &= MAY
=t B & : https://github.com/jayg996/few-shot-
gnn/commit/6afa395337949e1814cfc4b9bb895fde3927a9a3

SNU

e

A~
T

14

https://github.com/jayg996/few-shot-gnn
https://github.com/jayg996/few-shot-gnn/commit/6afa395337949e1814cfc4b9bb895fde3927a9a3

Ac 2M. ZFglal M

= main.py : 2= 2d5= A E
= test.py : & HOJ| A test iteration= T=AdSt= D=

= data/mini_imagenet.py : mini_imagenet D|O|EH A= 2= ZE

= data/generator.py : =2{= O|O|H M= 0| &5t7| MAESIHA batchz Bt

L

= models/models.py : AFHE &= embedding network2t GNN= T+ ot

= models/gnn_iclr.py : GNNOj|A] Graph conv@} adjacency matrix= |

FEs AL

J. Y. Choi. SNU

15

AL 4 (main.py)

= SFLEO| mini batch datalt 22 S
=02tM St5ole g

= Labeled sampled} test sample=
enc_nn= 0|&35}0 embedding
U2 ALt

; label x = formatted label x.cuda() " Metric nn (GN N) = |_g_ |-O:| teSt

. J N _'Ill:E’ﬁ’rT_[-rnL +|_rn1"r:r|_lt':-_ Sam |e01| EH OI- |Og AI-% 7:” Al_l-_é_

s of, 7‘* T label 2 lossE A4S0
return C’.:.F

J. Y. Choi. SNU 16

AE ZM (main.py)

J. Y. Choi. SNU

\J
=T

main.py Ir 20| 2H = M, train &=

Data loaderE TH|S}11, modelE& M ¢

2t |terat|on01|*1 = batch datas
et slideQ| train_batch &+ 0|29}
O IossE AL
A ALEl JossE O

metric nnS &t

>.‘

85t enc_nni}

s
=]

17

dl

E EM (main.py)

J. Y. Choi. SNU

iteration OFC} validationd} testE

(=1
=

loss A AFSH= E20| QIS

18

al

AL &M (models/models.py)

J. Y. Choi. SNU

= 2} 0| 0| X| 0| CHH embedding= Al A=

CNN 22 (ZE0| M= enc_nnO|2f11 &
=
=)

» Z+ O|0|X| & emb_size®| vector SLtEZ
embedding&!

19

al

AL &M (models/models.py)

MetricNN(nn.Module

num_inputs,

args, num_inputs,

num_inpu
self.gnn_obj = gnn_ic

- -I--.._-='-.-"-J-::utIrrF'tamerl—tedE l | Embedding O E 'I+ _CIP__:IEl 7—|I- |mageg|- Iabel
HEE 0|83l0f node® H!

= XA nodel| featureE GNN 2 & 2| input
oz JO|FH, output2 2 test sample2)
o 0, 1130 classOi| Ci{3l Of| =2t logit 4f= AlLre

n outputs, logits

J. Y. Choi. SNU 20

(models/gnn_iclr.py)

input_features

mini_imagenet”:

J. Y. Choi. SNU

="softmax ",

= GNN 2 2= pytorchZ &
re) =

= Zt GNNZ2| layer= node
featureE 0| &5}0
Wi(adjacency matrix)S A At
oti, O|F 0|85t
GraphConvE A4Iot= A2
2 74

21

AE M (models/gnn_iclr.py)

J. Y. Choi. SNU

=

= Node feature= 2O0}A| adjacency matri&
A LHSHE layer

= Edge feature 22 F712| no

O| Xt0 | 40| fc layerE Ol H & H-r01

*1 Al 4
7|)K = 42} CHE edgeli| &2 fc layer= O|
235}7| 28l Conv2dE 0|28t
= O} X| 2H0j| = softmax =2 3 node O A
2 E edgel| 42| 20| 10| CE2
normalization &

Q.
(D
—h
(D
OoF QD
—
C
-
CD
\l

» @ 'Y O £ adjacency matrixS Al At

22

o — |
==

J. Y. Choi. SNU

A (models/gnn_iclr.py)

= GraphConv layers pytorch® T+t I &
= Input2 £ W (adjacency matrix)2t x (node

feature)E &=

= gmul 20| M adjacency operation (edge
valueE 0|85t AHZ =l nodel| featureE
weighted sum) sl &

= Graph signa= fc layerZ Ci= layer2)
dimension0| S£A| HHH O &

« MEH A LHE x (node feature)E & 22| shape
2 Ha Z return

23

= 7| 2% Q1 Graph convolutional layerE pytorch® 7+216t= A2 O] O{EX| &%

S

5t graph2| 72 & 2} node X edge feature at2 H2|6l= ZO0| 1L 5

J. Y. Choi. SNU 24

