
Position-aware Graph Neural Networks

Seungryong Yoo

Seoul National University

1

[ICML 2019 oral]

2

Position-aware Graph Neural Networks

from [GraphSAGE 2017]

Motivation

 Current GNN-based node embedding methods only focus on local neighborhood structure
(e.g. q - h o p neighbor)

 Without node features, GNN cannot distinguish between two nodes at different location,
but having the same local structure

Position-aware Graph Neural Networks

3

Why node position information is important?

 How can we decide node position?
→ compare distance from common reference

 𝒅𝒔𝒑 : shortest path distance between two nodes

𝒅𝒔𝒑 𝒗𝟏 , 𝒗𝟑 = 𝟏, 𝒅𝒔𝒑 𝒗𝟐, 𝒗𝟑 = 𝟐

→ now %& and %* are distinguishable

 call these reference as anchor-set

Position-aware Graph Neural Networks

Definition of structure-aware/position-aware node embedding

 Position-aware node embedding

4

 Structure-aware node embedding

Position-aware Graph Neural Networks

Method Overview

5

𝑺 𝒊 ∶ i-th anchor-set

𝑺 ∶ set of anchor-sets

Position-aware Graph Neural Networks

Method Overview : Anchor-set Selection

 randomly select 𝒌 anchor-sets for each forward pass(i.e. each layer in network)

(sampling guided by Bourgain Theorem)

6

Position-aware Graph Neural Networks

Method Overview : Anchor-set Selection

 Bourgain Theorem

→ It is a guidance for choice of anchor-sets to guarantee the resulting representations
to have low-distortion

 What is low-distortion?

→ a low-distortion embedding function preserves distance well when mapping from
one metric space to another metric space

7

Position-aware Graph Neural Networks

Method Overview : Anchor-set Selection

 Bourgain Theorem

8

Position-aware Graph Neural Networks

Method Overview

9

𝒉𝒗𝒊
∶ node feature from (l-1)-th layer

𝑭 ∶ message computation function between two nodes
𝑨𝑮𝑮𝑴 ∶ message aggregation function within each anchor-set

Position-aware Graph Neural Networks

Method Overview : Message Computation

 compute messages between query node and each node in each anchor-set
(considering both position similarity and node features)

10

𝒅𝒔𝒑
𝒒

𝒖, 𝒗 = ቊ
𝒅𝒔𝒑 𝒖, 𝒗 , 𝒊𝒇 𝒅𝒔𝒑 𝒖, 𝒗 ≤ 𝒒

∞, 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

Position-aware Graph Neural Networks

11

Method Overview : Message Computation

 compute messages between query node and each node in each anchor-set
(considering both position similarity and node features)

(3

𝑭 𝒗𝒊, 𝒗𝒋, 𝒉𝒗𝒊
, 𝒉𝒗𝒋

= 𝒔 𝒗𝒊, 𝒗𝒋 𝑪𝑶𝑵𝑪𝑨𝑻 𝒉𝒗𝒊
, 𝒉𝒗𝒋

𝒔 𝒗𝒊, 𝒗𝒋 =
𝟏

𝒅𝒔𝒑
𝒒

𝒗𝒊, 𝒗𝒋 + 𝟏

Position-aware Graph Neural Networks

12

Method Overview : Message Aggregation

 aggregate messages within each anchor-set
→ output a matrix, in which each row is the information from each anchor-set

𝒇𝒐𝒓 𝒂𝒏𝒄𝒉𝒐𝒓 𝒔𝒆𝒕 𝑺𝒕

𝑴𝒗𝒊
𝒕 = 𝑨𝑮𝑮𝑴 𝑭 𝒗𝒊, 𝒗𝒋, 𝒉𝒗𝒊

, 𝒉𝒗𝒋
, 𝒗𝒋 ∈ 𝑺𝒕

𝑴𝒗𝒊
∈ 𝑹𝒌×𝒎

Position-aware Graph Neural Networks

13

Method Overview

𝑨𝑮𝑮𝑺 ∶ message aggregation function across all anchor-sets
𝒘 ∶ vector which projects & ' (to low-dimension vector

Position-aware Graph Neural Networks

14

Method Overview : Message Computation

 project output matrix to low-dimension(=number of anchor-sets) vector

 each element of the low-dimension vector encodes the distance information for each
anchor-sets, therefore structurally equivalent nodes are distinguishable

𝒘 ∈ 𝑹𝒎×𝟏

𝒛𝒗𝒊
= 𝝈(𝑴𝒗𝒊

𝒘) ∈ 𝑹𝒌×𝟏

Position-aware Graph Neural Networks

Method Overview : Message Computation

 aggregate messages across all the anchor-sets
→ computed new node feature passed to next layer

15

𝒉𝒗𝒊
= 𝑨𝑮𝑮𝑺(𝑴𝒗𝒊

)

Position-aware Graph Neural Networks

ProposedAlgorithm

anchor-set selection

message computation between nodes

message aggregation within anchor-set

project to low-dimension distance vector mess
age aggregation across all the anchor-sets

16

Position-aware Graph Neural Networks

Experiments

Position-aware Graph Neural Networks

Experiments

Position-aware Graph Neural Networks

Paper Reproducing

 Author’s original implementation

https://github.com/JiaxuanYou/P-GNN

 Task

Link prediction

 Used Dataset

Grid, Communities, PPI

 Experimental Setup

P-GNN-E-1L : 1-layer P-GNN using exact shortest path distance
P-GNN-E-2L : 2-layer P-GNN using exact shortest path distance

P-GNN-E-3L : 3-layer P-GNN using exact shortest path distance
P-GNN-F-1L : 1-layer P-GNN using truncated 2-hop shortest path distance
P-GNN-F-2L : 2-layer P-GNN using truncated 2-hop shortest path distance
P-GNN-F-3L : 3-layer P-GNN using truncated 2-hop shortest path distance

https://github.com/JiaxuanYou/P-GNN

Position-aware Graph Neural Networks

Paper Reproducing

 Training log

Grid, Communities datasets are relatively smaller than the PPI dataset, it took a few couple
of minutes to train, however, for training the PPI dataset, it took almost 7~8 hours to train.

Position-aware Graph Neural Networks

Paper Reproducing

 Results on reproducing experiments

 Results on original paper

Position-aware Graph Neural Networks

Paper Reproducing

Even though the original paper did not reported on the 3-layer P-GNNs, in my
reproducing experiments on link prediction task, 3-layer P-GNNs works better
than 2-layer P-GNNs. For Grid dataset, truncated 2-hop shortest path distance
was better than the case of using exact shortest path distance, however, for
Communities and PPI dataset it showed reversed results.

 Results on reproducing experiments

Position-aware Graph Neural Networks

Paper Reproducing

 Experiment requirements

python == 3.6.10
torch == 1.1.0
networkX
tensorboardX
sklearn

 Computing resource

4 GPUs (GeForce GTX TITAN)

 conda Environment Setup

conda create -n pgnn python=3.6
conda activate pgnn
conda install pytorch==1.1.0 torchvision -c pytorch
conda install networkX
conda install sklearn
python3 -m pip install tensorboardX

 Run training code

Ex)
python3 main.py --model PGNN --layer_num 2 --dataset grid --task=link --approximate=-1
(In this case, we train 2-layer P-GNN, with exact shortest path distance, on the Grid Dataset)

Position-aware Graph Neural Networks

Paper Reproducing

 Issues on installing torch-geometric

torch-geometric have dependency on torch-sparse, torch-scatter, torch-cluster,
but it was quite challenging to install those frameworks, so that I used the original code
except the codes requiring torch-geometric. Fortunately, the P-GNN model implementation
does not depend on torch-geometric. Some functions for data loading and
data pre-processing for graph data depends on torch-geometric, but it was not that difficult
to deviate by using alternative libraries like networkX. Also, I added torch_geometric.data.Data
source code in the dataset.py. Therefore I added editted version of original code
to perform link prediction task on Grid, Communities, PPI dataset with this file.

Position-aware Graph Neural Networks

Paper Reproducing

 Code explanation – model.py

PGNN_layer : Compute the each node’s distance to preselected anchor sets(from
preselect_anchor in utils.py, the feeding data have dists_max, dists_argams attribute
which indicates the shortest distance and the corresponding neighboring nodes).
The distance is defined by passed arguments(exact shortest path distance of
truncated 2-hop shortest distance). The messages from each anchor sets to each
node is concatenated with the node feature, and then through linear_hidden,
linear_out_position and defined Nonlinearity module, it finally return the position-
aware vector.

P-GNN : it consists of a module sequence, Linear unit, and defined numbers(by parsed
arguments of layer_num) of PGNN_layer unit. Finally it returns only one vector which
is position-aware.

Position-aware Graph Neural Networks

Paper Reproducing

 Code explanation – dataset.py

get_tg_dataset : return the list of preprocessed graph data, masking for positive neighbor nodes,
also it saves the distance information for each node to pickle file, and if it
already exists use the saved caches to preprocess.

load_graphs : return the graph dataset from the saved data directory or from networkX.
dataset to be returned is designated by its input argument dataset_str.

nx_to_tg_data : from load_graph function, we get graph data which is defined by networkX
framework. So that this function preprocess this networkX graph data to be
torch_geomtric.data.Data type.

load_tg_dataset : return torch_geometric.data.Data graph object dataset using its input argument
dataset_name

Data : source code from torch_geometric.data.Data object (to deviate the problems triggered
by uninstallation issue of torch_geometric and torch_sparse, torch_scatter, torch_cluster)

Position-aware Graph Neural Networks

Paper Reproducing

 Code explanation – args.py

--task : choose the task among link prediction or pairwise node classification
--model : choose model architecture among P-GNN, GCN, GAT, SAGE, GIN
--gpu : whether to use gpu
--cuda : which gpu to use
--dataset : which dataset to use, PPI, Grid, Communities
--approximate : -1 = exact shortest path distance, 2=truncated 2-hop shortest path distance
--layer_num : layer numbers of PGNN_layer for the PGNN
--cache : whether to use saved distance information of graph

Position-aware Graph Neural Networks

Paper Reproducing

 Code explanation – main.py

main : from the parsed arguments, it assigns the designated gpu, define the log writer(loss, auc
which would be visualized using tensorboard)and load the dataset and model. And then
during the defined repeat number and epoch(from parsed arguments), it computes the
auc score and loss of train/val/test and then prints out to the console. Also, it saves the
eventfile by the SummaryWriter. Finally, it saves the final score(mean and std) of auc in
the results directory.

Thank you

20

