Position-aware Graph Neural Networks

[ICML 2019 oral]

Seungryong Yoo
Seoul National University

1

Position-aware Graph Neural Networks

Motivation

* Current GNN-based node embedding methods only focus on local neighborhood structure
(e.g.q - h o p neighbor)

» Without node features, GNN cannot distinguish between two nodes at different location,

but having the same local structure
gi GNN rooted subtrees

2

from [GraphSAGE 2017]

Position-aware Graph Neural Networks

Why node position information is important?

* How can we decide node position? A @
— compare distance from common reference

* dg,: shortest path distance between two nodes .
dsp(vl,vg) =1, dsp(vz,vg) =2
- now %g and %- are distinguishable

= call these reference as anchor-set

Position-aware Graph Neural Networks

Definition of structure-aware/position-aware node embedding

» Position-aware node embedding

Definition 1. A node embedding z; = f,(v;),Yv; € V is
position-aware if there exists a function g,(-,-) such that

dsp(Vi,vj) = gp(2i,2;), where d (-, -) is the shortest path
distance in G.

= Structure-aware node embedding

Definition 2. A node embedding z; = f,, (v;),Yv; €
V is structure-aware if it is a function of up to q-hop
network neighbourhood of node v;. Specifically, z; =
9s(N1(vi), ..., Ng(v;)), where Ny, (v;) is the set of the nodes
k-hops away from node v;, and g5 can be any function.

Position-aware Graph Neural Networks

Method Overview

Anchor-set selection Embedding computation for all nodes Embeddlng computatlon for node vy

) |hv | S | _________ _l lei ,,,,,,,, T . -- F AGGM.
ot § = (505, 5. Ltea] S | My, 4|_|} A
L]
] .

layer

S ; : I-thanchor-set
S : set of anchor-sets

Position-aware Graph Neural Networks

Method Overview : Anchor-set Selection

Anchor-set selection

» randomly select k anchor-sets for each forward pass(i.e. each layer in network)
(sampling guided by Bourgain Theorem)

Position-aware Graph Neural Networks

Method Overview : Anchor-set Selection

= Bourgain Theorem

— It is a guidance for choice of anchor-sets to guarantee the resulting representations
to have low-distortion

= What is low-distortion?

Definition 3. Given two metric spaces (V,d) and (Z,d")
and a function f : V — Z, f is said to have distortion o if
Vu,v € V, Ld(u,v) < d'(f(u), f(v)) < d(u,v).

— a low-distortion embedding function preserves distance well when mapping from
one metric space to another metric space

Position-aware Graph Neural Networks

Method Overview : Anchor-set Selection

= Bourgain Theorem

Theorem 1. (Bourgain theorem) Given any finite metric
space (V,d) with |V| = n, there exists an embedding of
(V, d) into R* under any 1, metric, where k = O(log” n),
and the distortion of the embedding is O(logn).

Theorem 2. (Constructive proof of Bourgain theorem)
For metric space (V,d), given k = clog® n random sets
Si; CV,i=1,2..,logn,j = 1,2,...,clogn where c
is a constant, S; j is chosen by including each point in V
independently with probability 2—1, An embedding method
forv €V is defined as:

f v) =)) 172 d U b Slogn clogn

where d(v, S; j) = minyes, ; d(v,u). Then, f is an embed-
ding method that satisfies Theorem 1.

Position-aware Graph Neural Networks

Method Overview

Embedding computation for all

) | hv | S |l lei
o S {IS£§ 53}| h"!l Y |> :Il Mpz: J_l
|hv,| S | Mvs

-l MV4I

Anchor-set selection

nodes

Next
Iayer

- Output

Sz (o] 5 |- Wia] |

Embedding computation for node v,

h,, : node feature from (/-7)-th layer

F : message computation function between two nodes
AGGy : message aggregation function within each anchor-set

Position-aware Graph Neural Networks

Method Overview : Message Computation

Sk AGGs Nex
hv1 hvz . hv1 layer .
s—{M, 121} €R’
h”‘ hv3 Output

) 4
&

€ R3

V4

Sa|—{My, 31}

s
>

d;’p (u,v) =

ds,(u,v), if dgp(u,v) <q
00, otherwise

* compute messages between query node and each node in each anchor-set
(considering both position similarity and node features)

10

Position-aware Graph Neural Networks

Method Overview : Message Computation

S1 —* My, [1]§ AGGg Next
hy, | Po, Ry, layer
Sol—{ M, [2]} €R’
hﬂl h"s E Iz Output
/ 19V, —>

F (v, vj, hy, hy,) = s(v;, v;)CONCAT (hy, b,
1
dgp(vi, U]) +1
= compute messages between query node and each node in each anchor-set
(considering both position similarity and node features)

s(viv)) =

11

Position-aware Graph Neural Networks

Method Overview : Message Aggregation

S, F—{M,, [1]] AGGs _ MNex
hy, | Po, NP ayer
Sz M, [2] ER"
h1’1 h"s E Output
» Zv1 [r————

for anchor set S;
M, [t] = AGGy ({F (v,-, v, hy, h,,].) v, € st})
le- € kam

» aggregate messages within each anchor-set
— output a matrix, in which each row is the information from each anchor-set

12

Position-aware Graph Neural Networks

Method Overview

Anchor-set selection Embedding computation for all

b ' {é; sl h,,| S | :|IM,2: 4—|
|hv,| S | M,,
o My / |

nodes

Next
Iayer

- Output

S [g] S |- Migg]- |

AGGg

Embedding computation for node v,

: message aggregation function across all anchor-sets

w : vector which projects &' to low-dimension vector

13

Position-aware Graph Neural Networks

Method Overview : Message Computation

" AGGu)
S1—*{M,, [1] AGGg INext
h,,l hvz : _ hv1 ayer
S,— €ER"
Py [T [z Output
- 1’1 >
hvl h174 / S3 >le [3]/ E R3

w e RmX1
z,, = o(M,w) € R®1

» project output matrix to low-dimension(=number of anchor-sets) vector

= each element of the low-dimension vector encodes the distance information for each
anchor-sets, therefore structurally equivalent nodes are distinguishable 14

Position-aware Graph Neural Networks

Method Overview : Message Computation

hv1 h F AGGM

(4,31}

5
=
(%)
w
A &

V4

h,, = AGGs(M,,)

aggregate messages across all the anchor-sets
— computed new node feature passed to next layer

V1 &
51— My, [1] AGGq :‘eztr
h”1 h"z > hv1 Y
S, —s € R"
hV1 h% Output
/ s

15

Position-aware Graph Neural Networks

Proposed Algorithm

Algorithm 1 The framework of P-GNNs

Input: Graph G = (V,); Set S of k anchor-sets {5;};
Node input features {x,}; Message computation func-
tion F' that outputs an r dimensional message; Message
aggregation functions AGGjs, AGGg; Trainable weight
vector w € R"; Non-linearity o; Layer | € [1, L]
Output: Position-aware embedding z, for every node v
h, + x,
fori=1,...,Ldo
Si~Vfori=1,...,k ——— anchor-set selection
forv € V do
M, = 0 € R¥x"
fori=1...,kdo
M; « {F(v,u,h,,h,),Vue S;} ———— message computation between nodes

M. [i] AGGwm (M) —— message aggregation within anchor-set
end for
zy oMy -w) —— project to low-dimension distance vector mess
3‘;‘_ AGGs({M[d], Vi € [1, k]}) ———— age aggregation across all the anchor-sets
end ior
end for

z, e RF, Yo eV 16

Position-aware Graph Neural Networks

Experiments

Table 1. P-GNNs compared to GNNs on link prediction tasks, measured in ROC AUC. Grid-T and Communities-T refer to the transductive
learning setting of Grid and Communities, where one-hot feature vectors are used as node attributes. Standard deviation errors are given.

Grid-T Communities-T Grid Communities PPI
GCN 0.698 &+ 0.051 0.981 £ 0.004 0.456 £0.037 0.5124+0.008 0.769 + 0.002
GraphSAGE 0.682 £ 0.050 0.978 = 0.003 0.532 £ 0.050 0.516 £0.010 0.803 & 0.005
GAT 0.704 & 0.050 0.980 % 0.005 0.566 £+ 0.052 0.618 £0.025 0.783 4+ 0.004
GIN 0.732 4+ 0.050 0.984 4+ 0.005 0.499 £+ 0.054 0.692 +£0.049 0.782 4 0.010
P-GNN-F-1L. 0.542 £0.057 0.930 £+ 0.093 0.619 4+ 0.080 0.939 £0.083 0.719 4+ 0.027
P-GNN-F-2L. 0.637 = 0.078 0.989 +0.003 0.694 + 0.066 0.991 £ 0.003 0.805 %+ 0.003
P-GNN-E-1L 0.665 4+ 0.033 0.966 + 0.013 0.879 4+ 0.039 0.985+0.005 0.775 4 0.029
P-GNN-E-2L. 0.834 +0.099 0.988 + 0.003 0.940 +0.027 0.985 4+ 0.008 0.808 + 0.003

Experiments

Position-aware Graph Neural Networks

Table 2. Performance on pairwise node classification tasks, mea-
sured in ROC AUC. Standard deviation errors are given.

Communities Email Protein
GAT 0.520 £0.025 0.515+£0.019 0.515 % 0.002
GraphSAGE 0.514 +0.028 0.511 +0.016 0.520 4 0.003
GAT 0.620 £0.022 0.502 +=0.015 0.528 £ 0.011
GIN 0.620 £0.102 0.545 4+ 0.012 0.523 £ 0.002
P-GNN-F-1L 0.9854+0.008 0.630 +0.019 0.510 & 0.010
P-GNN-F-2L 0.997 +0.006 0.640 £+ 0.037 0.729 £0.176
P-GNN-E-1L 0.991 £0.013 0.625 £ 0.058 0.507 & 0.006
P-GNN-E-2LL 1.0 +0.001 0.640 +0.029 0.631 £0.175

Position-aware Graph Neural Networks

Paper Reproducing

= Author’s original implementation Task " Used Dataset

https://qithub.com/JiaxuanYou/P-GNN Link prediction Grid, Communities, PPI

= Experimental Setup

P-GNN-E-1L : 1-layer P-GNN using exact shortest path distance
P-GNN-E-2L : 2-layer P-GNN using exact shortest path distance
P-GNN-E-3L : 3-layer P-GNN using exact shortest path distance
P-GNN-F-1L : 1-layer P-GNN using truncated 2-hop shortest path distance
P-GNN-F-2L : 2-layer P-GNN using truncated 2-hop shortest path distance
P-GNN-F-3L : 3-layer P-GNN using truncated 2-hop shortest path distance

https://github.com/JiaxuanYou/P-GNN

Position-aware Graph Neural Networks

Paper Reproducing

= Training log

auc_communities
tag: repeat_0/auc_communities

0.98
0.96
0.94
0.92

0.9

0.88

auc_grid
tag: repeat_0/auc_grid

auc_ppi
tag: repeat_0/auc_ppi
0.84
0.8
0.76
0.72

0.68

0.64

Grid, Communities datasets are relatively smaller than the PPI dataset, it took a few couple
of minutes to train, however, for training the PPl dataset, it took almost 7~8 hours to train.

Position-aware Graph Neural Networks

Paper Reproducing

= Results on reproducing experiments
Table 1: Reproduced results

Grid Communities PPI
P-GNN-E-1L 0.644+0.009 0.955+0.008 0.773+0.032
P-GNN-E-2L 0.922+0.012 0.983+£0.002 0.781+0.008
P-GNN-E-3L 0.9304+0.039 0.981+£0.001 0.778+0.019
P-GNN-F-1L 0.541+£0.037 0.951£0.012 0.747+0.006
P-GNN-F-2L 0.75140.010 0.968+£0.005 0.775+0.001
P-GNN-F-3L 0.708+0.023 0.969-+0.006 0.796-+0.021

= Results on original paper
Table 2: Original results

Grid Communities PPI
P-GNN-E-1L 0.879£0.039 0.985+0.005 0.775+0.029
P-GNN-E-2L 0.940+0.027 0.985+0.008 0.808+0.003
P-GNN-F-1L 0.619£0.080 0.939£0.083 0.719£0.027
P-GNN-F-2L 0.694£0.066 0.991+0.003 0.805%0.003

Position-aware Graph Neural Networks

Paper Reproducing

= Results on reproducing experiments
Table 1: Reproduced results

Grid Communities PPI
P-GNN-E-1L 0.644+0.009 0.9554+0.008 0.773+0.032
P-GNN-E-2L 0.922+0.012 0.983+0.002 0.781+0.008
P-GNN-E-3L 0.930+0.039 0.9814+0.001 0.778+0.019
P-GNN-F-1L 0.5414+0.037 0.951+£0.012 0.7474+0.006
P-GNN-F-2L 0.751+0.010 0.9684+0.005 0.775+0.001
P-GNN-F-3L 0.7084+0.023 0.969+0.006 0.79640.021

Even though the original paper did not reported on the 3-layer P-GNNs, in my
reproducing experiments on link prediction task, 3-layer P-GNNs works better
than 2-layer P-GNNSs. For Grid dataset, truncated 2-hop shortest path distance
was better than the case of using exact shortest path distance, however, for
Communities and PPI dataset it showed reversed results.

Position-aware Graph Neural Networks

Paper Reproducing

= Experiment requirements = conda Environment Setup

conda create -n pgnn python=3.6

python == 3.6.10 conda activate pgnn

torch :kj(11.0 conda install pytorch==1.1.0 torchvision -c pytorch
?etWOL ax conda install networkX

ensorboar conda install sklearn

sklearn

python3 -m pip install tensorboardX

= Run training code

Ex)
python3 main.py --model PGNN --layer_num 2 --dataset grid --task=link --approximate=-1
(In this case, we train 2-layer P-GNN, with exact shortest path distance, on the Grid Dataset)

= Computing resource

4 GPUs (GeForce GTX TITAN)

Position-aware Graph Neural Networks

Paper Reproducing

Building wheels for collected packages: torch-sparse

Building wheel for torch-sparse (setup.py) ... error

torch-geometric have dependency on torch-sparse, torch-scatter, torch-cluster,

but it was quite challenging to install those frameworks, so that | used the original code
except the codes requiring torch-geometric. Fortunately, the P-GNN model implementation
does not depend on torch-geometric. Some functions for data loading and

data pre-processing for graph data depends on torch-geometric, but it was not that difficult
to deviate by using alternative libraries like networkX. Also, | added torch_geometric.data.Data
source code in the dataset.py. Therefore | added editted version of original code

to perform link prediction task on Grid, Communities, PPl dataset with this file.

Position-aware Graph Neural Networks

Paper Reproducing

PGNN_layer : Compute the each node’s distance to preselected anchor sets(from
preselect_anchor in utils.py, the feeding data have dists_max, dists_argams attribute
which indicates the shortest distance and the corresponding neighboring nodes).
The distance is defined by passed arguments(exact shortest path distance of
truncated 2-hop shortest distance). The messages from each anchor sets to each
node is concatenated with the node feature, and then through linear_hidden,
linear_out_position and defined Nonlinearity module, it finally return the position-
aware vector.

P-GNN : it consists of a module sequence, Linear unit, and defined numbers(by parsed
arguments of layer_num) of PGNN_layer unit. Finally it returns only one vector which
IS position-aware.

Position-aware Graph Neural Networks

Paper Reproducing

get_tg_dataset : return the list of preprocessed graph data, masking for positive neighbor nodes,
also it saves the distance information for each node to pickle file, and if it
already exists use the saved caches to preprocess.

load_graphs : return the graph dataset from the saved data directory or from networkX.

dataset to be returned is designated by its input argument dataset_str.

nx_to_tg_data : from load_graph function, we get graph data which is defined by networkX
framework. So that this function preprocess this networkX graph data to be
torch_geomtric.data.Data type.

load_tg_dataset : return torch_geometric.data.Data graph object dataset using its input argument

dataset_name
Data : source code from torch_geometric.data.Data object (to deviate the problems triggered
by uninstallation issue of torch_geometric and torch_sparse, torch_scatter, torch_cluster)

Position-aware Graph Neural Networks

Paper Reproducing

--task : choose the task among link prediction or pairwise node classification

--model : choose model architecture among P-GNN, GCN, GAT, SAGE, GIN

--gpu : whether to use gpu

--cuda : which gpu to use

--dataset : which dataset to use, PPI, Grid, Communities

--approximate : -1 = exact shortest path distance, 2=truncated 2-hop shortest path distance
--layer_num : layer numbers of PGNN_layer for the PGNN

--cache : whether to use saved distance information of graph

Position-aware Graph Neural Networks

Paper Reproducing

main : from the parsed arguments, it assigns the designated gpu, define the log writer(loss, auc
which would be visualized using tensorboard)and load the dataset and model. And then
during the defined repeat number and epoch(from parsed arguments), it computes the
auc score and loss of train/val/test and then prints out to the console. Also, it saves the

eventfile by the SummaryWriter. Finally, it saves the final score(mean and std) of auc in
the results directory.

Thank you

