
Geometric Graph Convolutional Neural
Networks

Bong Jun Lee

Seoul National University

1

Geometric Graph Convolutional Neural Networks
Przemysław Spurek, Tomasz Danel, Jacek Tabor, Marek Śmieja, Łukasz Struski, Agnieszka Słowik, Łukasz Maziarka
https://arxiv.org/abs/1909.05310

Geometric Graph Convolutional Neural
Networks

2

J. Y. Choi. SNU

Geometric Deep Learning: geo-GCN

How to use geometric features (spatial coordinates) in GCNs

A proper generalization of GCNs and CNNs

Perform graph augmentation, which further improves performance of
the model

3

Superpixels

 Provide an efficient low/mid-level
representation of image data, which
greatly reduces the number of image
primitives for subsequent vision tasks.

 Vertices correspond to (super)pixels
and edges represent their spatial
relations

 Each image is represented as an
embedded graph of 75 nodes
defining the centroids of superpixels

4

Datasets

Superpixel Sampling Networks Varun Jampani, Deqing Sun, Ming-Yu Liu, Ming-Hsuan Yang, Jan Kautz

J. Y. Choi. SNU

• Assume each node 𝑣𝑖 is additionally identified with its coordinates 𝑝𝑖 ∈ ℝ𝑇

തℎ𝑖 𝑢, 𝑏 = σ𝑗∈𝑁𝑝
𝑅𝑒𝐿𝑈 𝑢𝑇 𝑝𝑗 − 𝑝𝑖 + 𝑏 ℎ𝑗

where 𝑢 ∈ ℝ𝑇 , 𝑏 ∈ ℝ are trainable

• Let 𝑈 = 𝑢1, … , 𝑢𝑘 and 𝑏 = 𝑏1, … , 𝑏𝑘 define 𝑘-filters

• The intermediate representation ℎ𝑖 is a vector defined by:

തℎ𝑖 = തℎ𝑖(𝑢1, 𝑏1), … , തℎ𝑖(𝑢𝑘, 𝑏𝑘)

MLP (ഥ𝐻;𝑊) = 𝑅𝑒𝐿𝑈(𝑊𝑇 ഥ𝐻 + 𝑏)

Formalization of geo-GCN

5

J. Y. Choi. SNU

• Theorem
• Let 𝑀 = [𝑚𝑖′𝑗′]𝑖′,𝑗′∈{−𝑘..𝑘} be a given convolutional mask

• Let 𝑛 = (2𝑘 + 1)2 (number of elements of M)

• Then there exis𝑡 𝑢 ∈ ℝ2, 𝑏1, … , 𝑏𝑛 ∈ ℝ and 𝑤 ∈ ℝ2 such that

𝑀 ∗ 𝐻 =෍

𝑖=1

𝑛

𝑤𝑖
ഥ𝐻(𝑢, 𝑏𝑖)

Theoretical Analysis of geo-GCN

6

J. Y. Choi. SNU

• Proof
• Let 𝑃 ⊂ ℝ2 denote all possible positions in the mask 𝑀, i.e. 𝑃 = [𝑖′𝑗′]𝑇: 𝑖′, 𝑗′ ∈ {−𝑘. .
𝑘}

• Let 𝑢 ∈ ℝ2 denote an arbitrary vector which is not orthogonal to any element
from 𝑃 − 𝑃. Then

𝑢𝑇𝑝 ≠ 𝑢𝑇𝑞 for 𝑝, 𝑞 ∈ 𝑃, 𝑝 ≠ 𝑞
• Consequently, we may order the elements of 𝑃 so that 𝑢𝑇𝑝1>…> 𝑢𝑇𝑝𝑛.

• Let𝑀𝑖 denote the convolutional mask, which has value one at the position 𝑝𝑖 , and
zero otherwise.

• Now we can choose arbitrary 𝑏𝑖 such that
𝑏𝑖∈ (−𝑢𝑇𝑝𝑖 , −𝑢

𝑇 𝑝𝑖+1) for 𝑖 = 1. . 𝑛 − 1, 𝑏𝑛>−𝑢
𝑇𝑝𝑛

for example 𝑏𝑖 = −𝑢𝑇
𝑝𝑖 + 𝑝𝑖+1

2
for 𝑖 < 𝑛, 𝑏𝑛>−𝑢

𝑇𝑝𝑛 + 1

• Then observe that

Theoretical Analysis of geo-GCN

7

J. Y. Choi. SNU

ഥ𝐻 𝑢, 𝑏1 = 𝑢𝑇𝑝1 + 𝑏1 ⋅ 𝑀1 ∗ 𝐻
ഥ𝐻 𝑢, 𝑏2 = 𝑢𝑇𝑝1 + 𝑏2 ⋅ 𝑀1 + 𝑢𝑇𝑝2 + 𝑏2 ⋅ 𝑀2 ∗ 𝐻

• and generally for every 𝑘 = 1. . 𝑛 we get
ഥ𝐻(𝑢, 𝑏𝑘) = σ𝑖=1

𝑘 𝑢𝑇𝑝𝑖 + 𝑏𝑘 ⋅ 𝑀𝑖 ∗ 𝐻

• where all the coefficients in the above sum are strictly positive. Conseque
ntly,

𝑀1 ∗ 𝐻=
ഥ𝐻 𝑢, 𝑏1

𝑢𝑇𝑝1+𝑏1

• and we obtain recursively that

𝑀𝑘 ∗ 𝐻=
1

𝑢𝑇𝑝𝑘+𝑏𝑘
ഥ𝐻 𝑢, 𝑏𝑘 -

1

𝑢𝑇𝑝𝑘+𝑏𝑘
σ𝑖=1
𝑘−1 𝑢𝑇𝑝𝑖 + 𝑏𝑘 ⋅ 𝑀𝑖 ∗ 𝐻

• which trivially implies that every convolution 𝑀𝑘 ∗ 𝐻 can be obtained as a
linear combination of ഥ𝐻(𝑢, 𝑏𝑖)𝑖=1..𝑘

Theoretical Analysis of geo-GCN (cont.)

8

𝑀 ∗ 𝐻 =෍

𝑖=1

𝑛

𝑤𝑖
ഥ𝐻(𝑢, 𝑏𝑖)

J. Y. Choi. SNU

Experiment Result #1

 Image graph classification
 Grid: regular grid with connections between adjacent pixels which have 2-

dimensional location, and it is characterized by a 1- dimensional pixel
intensity.

 Superpixels: irregular grid consisting of 75 superpixels, where the edges are
determined by spatial relations between nodes using k-nearest neighbors.

9

J. Y. Choi. SNU

Experiment Result #2

 Incomplete image classification
• MNIST dataset, where a square patch of the size 13x13 was removed from

each image

• The location of the patch was uniformly sampled for each image

• Imputation Methods
• mean: Missing features were replaced with mean values of those features computed

for all (incomplete) training samples.

• k-nn: Missing attributes were filled with mean values of those features computed fro
m the k nearest training samples (we used K = 5). Neighborhood was measured usin
g Euclidean distance in the subspace of observed features.

• mice: This method fills absent pixels in an iterative process using Multiple Imputation
by Chained Equation (mice), where several imputations are drawing from the conditi
onal distribution of data by Markov chain Monte Carlo techniques

10

J. Y. Choi. SNU

Experiment Result #2 (cont.)

 Incomplete image classification

11

J. Y. Choi. SNU

Experiment Result #3

 Learning from molecules
• 3 datasets from MoleculeNet

• Blood-Brain Barrier Permeability (BBBP) is a binary classification task of predicting wh
ether or not a given compound is able to pass through the barrier between blood a
nd the brain, allowing the drug to impact the central nervous system. The ability of a
molecule to penetrate this border depends on many different properties such as lipo
philicity, molecule size, and its flexibility.

• Another 2 datasets, ESOL and FreeSolv, are solubility prediction tasks with continuou
s targets.

12

J. Y. Choi. SNU

Ablation study of the data augmentation

• Removing predicted positions, and thus setting all positional vectors to ze
ro in തℎ𝑖 𝑢, 𝑏 = σ𝑗∈𝑁𝑝

𝑅𝑒𝐿𝑈 𝑢𝑇 𝑝𝑗 − 𝑝𝑖 + 𝑏 ℎ𝑗

• The outcome of augmenting the data with random rotations and 30 predi
cted molecule conformations

13

Thank you

14

User Guide & Reproduction

15

geo-GCN

 Install anaconda environment

 Download the official implementation of t
he geo-GCN architecture made by autho
r.
 $ git clone https://github.com/gmum/geo-g

cn.git

 Go to the src directory and edit environm
ent.yml as follows
 - python=3.8.2=h9d8afe_1_cpython
 + python

 Create a new environment
 $ conda env create -f environment.yml

 Activate geogcn environment
 $ conda activate geogcn

16

How to Set Up: Source Code

link: https://github.com/gmum/geo-gcn

https://github.com/gmum/geo-gcn.git
https://github.com/gmum/geo-gcn

pytorch_geometric

 Visit the extension library webpage
 https://github.com/rusty1s/pytorch_geometric

 Check pytorch version and set variable as fool
ows

 $ python -c “import torch; print(torch.__version__)”
 $ export CUDA=cu92

 Install pytorch_geometric extension following th
e instruction based on pytorch version

 $ pip install torch-scatter==latest+${CUDA} -f https:
//pytorch-geometric.com/whl/torch-1.4.0.html

 $ pip install torch-sparse==latest+${CUDA} -f https:
//pytorch-geometric.com/whl/torch-1.4.0.html

 $ pip install torch-cluster==latest+${CUDA} -f https:
//pytorch-geometric.com/whl/torch-1.4.0.html

 $ pip install torch-spline-conv==latest+${CUDA} -f
https://pytorch-geometric.com/whl/torch-1.4.0.html

 $ pip install torch-geometric

17

How to Set Up: Extension Library

https://github.com/rusty1s/pytorch_geometric

Execution of the source code

 Run geo-GCN on MNISTSuperpixels
with default parameters
 $ python train_models.py MNISTSuperp

ixels

► [note] other options are not available in t
he official github except ‘MNISTSuperpixel
s’.

Reproducing Result

 The result outputs with ‘Loss’, ‘Train
Acc’, ‘Test Acc’

18

How to Run & Reproducing Result (Superpixels)

Reproducing Output

Epoch: 001, Loss: 6.06750, Train Acc: 0.11232, Test Acc: 0.11340

Epoch: 002, Loss: 2.30311, Train Acc: 0.11235, Test Acc: 0.11350

Epoch: 003, Loss: 2.30176, Train Acc: 0.11237, Test Acc: 0.11350

Epoch: 004, Loss: 2.30125, Train Acc: 0.11237, Test Acc: 0.11350

Epoch: 005, Loss: 2.30138, Train Acc: 0.11237, Test Acc: 0.11350

Epoch: 006, Loss: 2.30143, Train Acc: 0.11237, Test Acc: 0.11350

Epoch: 007, Loss: 2.30123, Train Acc: 0.11237, Test Acc: 0.11350

Epoch: 008, Loss: 2.30128, Train Acc: 0.11237, Test Acc: 0.11350

Epoch: 009, Loss: 2.30131, Train Acc: 0.11237, Test Acc: 0.11350

Epoch: 010, Loss: 2.30144, Train Acc: 0.11237, Test Acc: 0.11350

…

Epoch: 090, Loss: 2.30123, Train Acc: 0.11237, Test Acc: 0.11350

Epoch: 091, Loss: 2.30124, Train Acc: 0.11237, Test Acc: 0.11350

Epoch: 092, Loss: 2.30124, Train Acc: 0.11237, Test Acc: 0.11350

Epoch: 093, Loss: 2.30124, Train Acc: 0.11237, Test Acc: 0.11350

Epoch: 094, Loss: 2.30123, Train Acc: 0.11237, Test Acc: 0.11350

Epoch: 095, Loss: 2.30124, Train Acc: 0.11237, Test Acc: 0.11350

Epoch: 096, Loss: 2.30124, Train Acc: 0.11237, Test Acc: 0.11350

Epoch: 097, Loss: 2.30123, Train Acc: 0.11237, Test Acc: 0.11350

Epoch: 098, Loss: 2.30123, Train Acc: 0.11237, Test Acc: 0.11350

Epoch: 099, Loss: 2.30123, Train Acc: 0.11237, Test Acc: 0.11350

19

Code Structure: Flow

train_models.py

architectures torch_geometric.data torch_geometric.datasets

normalized_cut_2d graph_conv torch_geometric.nn

torch_geometric.utils

geo-GCN

pytorch_geometric

GeoGC DataLoader MNISTSuperpixels

normalized_cut_2d GraphConv
graclus, max_pool,
global_mean_pool

normalized_cut add_self_loops

MessagePassing

from graph_conv import GraphConv
from normalized_cut_2d import normalized_cut_2d
from torch_geometric.nn import graclus, max_pool, global_mean_pool

class GeoGC(torch.nn.Module):
def __init__(self, dim_coor, out_dim, input_features,

layers_num, model_dim, out_channels_1, dropout,
use_cluster_pooling):

self.conv_layers = [GraphConv(coors=dim_coor,
…
dropout=dropout)] + \

[GraphConv(coors=dim_coor,
…
dropout=dropout) for _ in range(layers_num - 1)]

self.conv_layers = torch.nn.ModuleList(self.conv_layers)
self.fc1 = torch.nn.Linear(model_dim, out_dim)

def forward(self, data):
for i in range(self.layers_num):

data.x = self.conv_layers[i](data.x, data.pos, data.edge_index)

if self.use_cluster_pooling:
weight = normalized_cut_2d(data.edge_index, data.pos)
cluster = graclus(data.edge_index, weight, data.x.size(0))
data = max_pool(cluster, data, transform=T.Cartesian(cat=False))

data.x = global_mean_pool(data.x, data.batch)
x = self.fc1(data.x)

return F.log_softmax(x, dim=1)
20

Code Structure: GeoGC

Graph Conv Layers

FC Layer

class GraphConv(MessagePassing):
def __init__(self, coors, out_channels_1, out_features, label_dim=1, dropout=0):

super(GraphConv, self).__init__(aggr='add')
self.lin_in = torch.nn.Linear(coors, label_dim * out_channels_1)
self.lin_out = torch.nn.Linear(label_dim * out_channels_1, out_features)
self.dropout = dropout

def forward(self, x, pos, edge_index):

edge_index, _ = add_self_loops(edge_index, num_nodes=x.size(0)) # num_edges = num_edges + num_nodes

return self.propagate(edge_index=edge_index, x=x, pos=pos, aggr='add') # [N, out_channels, label_dim]

def message(self, pos_i, pos_j, x_j):

tmp = pos_j - pos_i
L = self.lin_in(tmp) # [num_edges, out_channels]
num_nodes, label_dim = list(x_j.size())
label_dim_out_channels_1 = list(L.size())[1]

X = F.relu(L)
Y = x_j
X = torch.t(X)
X = F.dropout(X, p=self.dropout, training=self.training)
result = torch.t(

(X.view(label_dim, -1, num_nodes) * torch.t(Y).unsqueeze(1)).reshape(label_dim_out_channels_1, num_nodes))
return result

def update(self, aggr_out):

aggr_out = self.lin_out(aggr_out) # [num_nodes, label_dim, out_features]
aggr_out = F.relu(aggr_out)
aggr_out = F.dropout(aggr_out, p=self.dropout, training=self.training)

return aggr_out
21

Code Structure: GraphConv

Convolution Mask M

NN

Appendix

22

PyTorch Geometric (PyG) is a geometric d
eep learning extension library for PyTorch.

 Various methods for deep learning on gr
aphs and other irregular structures, also
known as geometric deep learning, from
a variety of published papers

 An easy-to-use mini-batch loader for ma
ny small and single giant graphs, multi g
pu-support, a large number of common b
enchmark datasets (based on simple int
erfaces to create your own), and helpful t
ransforms, both for learning on arbitrary
graphs as well as on 3D meshes or point
clouds.

23

pytorch_geometric

