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3 Bui Tien Cuong, SNU



Recommendation Systems

• Graph data are essential for recommendation systems

• Represent relationships between objects (user-item, person-person, …)

• Representation learning achieves significant improvements 

• Learn latent features with DNN-based models via node embeddings

• GCN-based methods are efficient on recommendation systems
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Challenges

• GCN-based methods are usually designed for small graphs

• Training and inference on large graphs are problematic

• Hard to use full graph Laplacian during training on recommendation systems:

o Billions of nodes

o Constantly evolving
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PinSage = Pinterest + GraphSage

• Pinterest: content discovery application

– Pins – I (visual links to online content): 2BN

– Boards – C (collections of pins): 1BN

• Bipartite graph (V = I U C): 18BN pin-board edges 

• A pin u has real-valued attributed xu (text and 

image features)
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PinSage = Pinterest + GraphSage

• Apply GraphSage Concepts to web-scale recommendation 

at Pinterest

• Leverage random walks to sample nodes 

• Add 2-layer supports to each node

• Generate embeddings sampled nodes

• At the publication time:

– Largest application of graph embeddings

– 3BN nodes, 18BN edges

– 10000x bigger than regular GCN applications
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Key insights

• Localized convolutions: 

– Sampling node through random walks (with personalized PageRank scores)

– Share parameters across nodes

• Importance pooling: use scores to weight node features

• Curriculum training: increasing difficulty of examples

• Efficiency: map-reduce minibatches

• AGL: an industrial-purpose graph from Ant Financial applies these concepts
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Two layers of support
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Embeddings for each node are computed by a different network, but parameters are shared among 

boxes with same shading.



Importance-based neighbor sampling

• Previous methods: k-hop graph neighborhoods

• PinSage:

– Start random walk from u

– Compute L1-normalized visit count of nodes

– N(u) = T most “influential” neighbors of node u (having the highest visit 

counts) -> set of weights 𝛼
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Training

• Labelled pairs of items: L = {(q,i) | item i is a good recommendation candidate 

for query q}

• Goal: output embeddings of q and i are close in the embedding space
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Minibatch Algorithm
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Negative Sampling

• Approximate the normalization factor of edge 

likelihood

• Sample 500 negative items shared across all 

training examples in each minibatch

• Include “hard” negative examples:

– Somewhat relevant to q, but not as related as i

– Randomly sample items with Personalized 

PageRank score ∈ [2000, 5000]
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Loss function

• Use the concept of triangle loss

– Maximize inner product of positive examples (q is related to i)

– Minimize inner product of negative examples (q is unrelated to i)

• For a pair of embeddings (zq, zi): (q, i) ∈ L, loss function is:
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Curriculum Learning

• Using negative items achieves faster convergence

• First epoch: no negative items used → find area in parameter space with small 

loss

• Gradually add negative items, model focuses on learning to distinguish 

between highly related and somewhat related items

– At epoch n, have n - 1 hard negative items for each item
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Hit-rate and MRR performance
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Accuracy performance
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Speed Performance
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Examples of Recommended Pins
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Implementation

• My implementation:

– https://github.com/alexbui91/pinsage

• Reference code:

– https://gist.github.com/BarclayII
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Future Directions

• The whole training process is based on (q, i) pairs, so would be interesting to improve 

informativeness of this kind of link

• Related boards as well, not only pins

• Weight relationship by:

– Frequency of user’s interaction with other pins that are close in the t-SNE representation

– Some function of user statistics

• Complete code implementation:

– Solve the heterogeneous node-attribute problem
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THANK YOU !
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