
Diffusion Convolutional Recurrent Neural

Network: Data-Driven Traffic Forecasting

(Yaguang Li et al., ICRL 2018)

Presented by: LE VAN DUC (2019-38262)

Outline

 Introduction

 Graph Diffusion Convolution Definition

 Diffusion Convolutional Recurrent Neural Network (DCRNN)

 Detailed Implementation Explanation

 Training & Testing

 Real Experiments Running

 More Evaluations w/ SOTA methods

 Conclusions

Introduction

● The paper tries to solve traffic forecasting

problems by:

○ A Diffusion Process on a Directed Graph to model the

Spatial Correlations in Traffic Flow => Diffusion

Convolution

○ An Encoder-Decoder architecture to capture the

Temporal Dependency => Diffusion Convolutional

Gated Recurrent Unit (DCGRU)

Traffic Sensor Network

Problem Statement & Diffusion Convolution Definition

● Traffic Forecasting Problem:

○ Sensor networks as a weighted directed graph

○ V = {traffic sensors}, E = {roads between sensors},

○ Wij = road network distance

● Diffusion Convolution:

○ Model the spatial correlations of traffic flow as a Diffusion process by a

Random Walk on G with a state transition matrix

○ is the out-degree diagonal matrix.

○ Define the diffusion convolution over a graph signal X and a filter f as:

○ ϴ are the learnable parameters, 2 transition matrices represent the

bidirectional diffusion process. K is the diffusion steps of the random walk.

Diffusion convolution

Diffusion Convolutional Layer

● Diffusion Convolutional (DiffConv) Layer:

○ Build a diffusion convolutional layer that maps P-input features to Q-output features.

○ X is input, H is output, {fθ} are filters, a is the activation function (e.g. ReLU, Sigmoid).

○ This layer can be trained by a stochastic gradient based method.

● Relation with Spectral Graph Convolution:

○ Spectral Graph Convolution (e.g. ChebNet) can be considered a special case of DiffConv.

○ This paper proved that, the spectral graph convolution defined as

○ With L= ΦΛΦT & F(θ)= (polynomial filter) is equivalent to graph DiffConv up to a

similarity transformation, when G is undirected graph.

Diffusion Convolutional Recurrent Neural Network (DCRNN)

● Use Recurrent Neural Networks (e.g Gated Recurrent Unit, GRU) to model the temporal dependency.

● Replace the matrix multiplications in a GRU cell with DiffConv => DiffConv GRU cells.

● For multiple times ahead traffic flow prediction, employ an Encoder-Decoder model with both networks

are DiffConv Recurrent layers => DCRNN model.

Code Link & Experiments Results

● Code Link: https://github.com/vanduc103/gcn2020_project

● You can check README file in the Code Link to see my Training files that show

the Experiments Results.

● The instructions to prepare the data, construct the Graph, training, and testing

are in the README file in the Code Link.

● Model training:

○ python dcrnn_train.py --config_filename=data/model/dcrnn_la.yaml

● Model testing (with 1 pre-trained model):

○ python run_demo.py --config_filename=data/model/dcrnn_DR_1_h_12_64-

64_lr_0.01_bs_64_0527211535/config_100.yaml

https://github.com/vanduc103/gcn2020_project

Detailed Implementation Explanation

● Diffusion Filter (file lib/utils.py)

○ Random Walk filter (DO
-1W): see code on the right

○ Bi-directional RW filter (DI
-1W & DO

-1W):

■ compute RW filter 2 times with adj_mx & adj_mx transpose.

○ Scaled Laplacian filter: compute Spectral Graph Conv (to compare w/ DiffConv)

○ Identity filter: ignore spatial filter by multiplying w/ identity matrices.

● DiffConv GRU Cell (file model/dcrnn_cell.py)

○ GRU Gates computation by DiffConv:

■ Reset Gate (r), Update Gate (u)

■ Candidate (C) and Output (H)

○ Input, Output:

■ Input: Batch of Historical Traffic Time series

■ Input Shape: (B, num_nodes * input_dim)

■ Output: Batch of Predicted Values

■ Output Shape: (B, output_size)

represent adjacency

matrix in sparse form

compute out-degree

diagonal matrix (DO
-1)

DO
-1W as sparse-

dense matrix

multiplication

Code for DiffConv:

Recursive Sparse-

Dense Matrix

Multiplication with

Max-Diffusion-Step

(1,2,3…) => O(KN)

Diffusion Convolutional Recurrent Neural Network Model (DCRNN Model)

● DCRNN Model (file model/dcrnn_model.py)

○ Build DiffConv GRU Cell and stack many cells to build Encoder and Decoder layers:

○ Some important parameters:

 max_diffusion_steps: defines number of diffusion steps (K-hop) we would run by random walk from a

node. Default is 2 diffusion steps.

 filter_type: defines which Diffusion Filter we will use. Default is “dual_random_walk” that applies bi-

directional RW filter. There are 3 other filters: “random_walk”, “scaled laplacian” (for Spectral GNN

computation), “identity” (for not applying spatial learning in DCRNN model)

 horizon: number of time intervals will be forecasting (each time interval is 5 minutes). Default is 12

horizons that means forecasting from 5 minutes to 1 hour.

Training and Testing

● Data Preparation: collect traffic sensors data and generate training set

○ Traffic sensors data: collect traffic sensors data from Los Angeles (METR-LA) and the Bay Area (PEMS-BAY).

Each sensor has time interval 5 minutes.

○ Generate training data: generate train/val/test data by aggregating some time windows (here is 12 time

windows of each 5 minutes = total 1 hour prediction)

● Graph Construction:

○ Generate Adjacency Matrix as Weighted Distance Matrix between pairwise road sensors. Choose threshold K

(=0.1) to make graph sparse.

● Model Training

○ Training configuration: in file .yaml, including model and training hyperparameters.

○ Loss function: Use MAE (Mean Absolute Error) Loss

○ Training monitoring: in file info.log

● Model Evaluation

○ Baseline methods evaluation: HA (Historical Average), VAR (Vector Auto-Regressive), Static Prediction (fixed

prediction)

○ Metric: there are 3 evaluation metrics: MAE metric, MAPE (Mean Absolute Percentage Error) metric, RMSE

(Root Mean Squared Error) metric.

Running Experiments

● Recover “comparison performance” of DCRNN

model (with forecasting time T = 15’, 30’, 1h) as

in the paper: use dual_random_walk filter,

max_diffusion_step = 2, horizon = 12.

● Experiment to investigate the effect of diffusion

convolution (spatial dependence modeling):

NoDiffConv (use Identity filter), UniDiffCov (use

RW filter), FullDiffConv (use Bi-directional RW

filter)

Dataset T Metric Static HA VAR DCRNN

METR-LA 15’ MAE

RMSE

MAPE

4.02

8.69

9.39%

4.15

7.77

12.90%

4.37

7.78

10.08%

2.67

5.19

6.88%

30’ MAE

RMSE

MAPE

5.09

11.13

12.21%

4.15

7.77

12.90%

5.40

9.37

12.75%

3.08

6.33

8.41%

1h MAE

RMSE

MAPE

6.79

14.21

16.71%

4.15

7.77

12.90%

6.50

10.68

15.84%

3.58

7.56

10.33%

Dataset T Metric NoDiffConv UniDiffConv FullDiffConv

METR-LA 15’ MAE

RMSE

MAPE

2.98

5.90

7.90%

2.72

5.25

7.06%

2.67

5.19

6.88%

30’ MAE

RMSE

MAPE

3.58

7.29

10.22%

3.14

6.39

8.67%

3.08

6.33

8.41%

1h MAE

RMSE

MAPE

4.45

8.99

13.77%

3.64

7.62

10.72%

3.58

7.56

10.33%

● Experiment to study the effect of graph

construction: Undirected (use Laplacian filter

or Spectral GNN) vs. Directed Graph (use

Laplacian filter or DiffConv with Bi-directional

RW filter)

● Experiment to examine the effect of

Diffusion Steps (K-hop): vary

max_diffusion_step from 1 to 5.

Dataset T Metric Undirected

(Laplacian)

Directed

(Laplacian)

Directed

(DiffConv)

METR-LA 15’ MAE

RMSE

MAPE

2.72

5.25

7.06%

2.68

5.22

6.91%

2.67

5.19

6.88%

30’ MAE

RMSE

MAPE

3.14

6.39

8.67%

3.08

6.34

8.46%

3.08

6.33

8.41%

1h MAE

RMSE

MAPE

3.64

7.62

10.72%

3.57

7.56

10.40%

3.58

7.56

10.33%

Dataset T Metric K = 1 K = 2 K = 3 K = 4 K = 5

METR-LA 15’ MAE

RMSE

MAPE

2.68

5.16

6.87%

2.67

5.19

6.88%

2.69

5.23

6.92%

2.74

5.33

7.04%

2.97

5.74

8.19%

30’ MAE

RMSE

MAPE

3.09

6.27

8.48%

3.08

6.33

8.41%

3.09

6.35

8.44%

3.15

6.47

8.59%

3.50

7.24

10.70%

1h MAE

RMSE

MAPE

3.58

7.49

10.50%

3.58

7.56

10.33%

3.58

7.58

10.34%

3.63

7.70

10.50%

4.22

9.06

14.07%

More Evaluations

● Compare with 2 recent SOTA methods

○ Yu et al., Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic

Forecasting, IJCAI 2018

■ Use common Spectral filter (e.g in ChebNet) and generalize to multi-dimensional tensors.

■ Do not use RNN because of time-consuming recurrent computation. Use only Conv Block with the

combination of Graph Spatial Conv and Gated Temporal Conv.

○ Diao et al., Dynamic Spatial-Temporal Graph Convolutional Neural Networks for Traffic Forecasting, AAAI

2019

■ Learn the Laplacian Matrix for traffic networks by specific time-of-day dynamically (not assume

adjacency matrix unchanged as previous) => Dynamic Laplacian Matrix Estimator.

■ Other layers similar to previous methods (a ConvBlock = Graph Conv + Gated Temporal Conv)

● Apply with other spatiotemporal datasets (crowd flows)

○ Dataset description: Taxi Trajectory Dataset in Beijing (2014). Data = Inflow + Outflow at a Region at a Time.

○ Data preparation (in folder data/beijing2014):

■ Generate training data by time windows 30 minutes.

■ Compute Adjacency Matrix as Weighted Distance Matrix of pairwise region distance.

■ Training & Testing with taxi trajectory data (future plan)

Conclusions

 This is one of the first papers that proposes to apply Graph Diffusion Convolutional Networks into a

spatiotemporal problem like Traffic Forecasting.

 The leverage of Diffusion Convolution has given good forecasting results.

 Recent SOTA methods have pointed out and solved some weak points of this models, e.g. a time-

consuming recurrent network computation or an impractical static adjacency matrix for dynamic

problems like traffic.

 GNN has promising power in solving real-life problems. I hope that we can successfully apply GNN

in many real-world problems in the future.

Thank you for reading!

HAVE A GOOD DAY!

