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How Road Networks are Different?

• GCN works well for social, citation, biological, etc…

• Road networks differ substantially from such tasks.

• Many implicit assumptions in GCN proposals do not hold.
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(1) Edge relational

not only node and edge attributes but 

also between-edge attributes.

e.g.) angle between two road 

segments affects transition time

(2)  Low-density

Node degree: 2.2 (road) vs 492 (social)  Sensitive to abnormal neighbors. 
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4

CB

BD

ABAB, BD, CB are all adjacent at B. 

Considering driving speed, BD and CB 

are similar but not AB.

 Volatile homophily

※ Homophily: adjacent roads are similar 

(3) Homophily is not always true
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Main Contribution

• Traditional GCNs:

• Do not support relational attributes between intersections and road 

segments, such as edge attributes and between-edge attributes. 

• They also rely on homophily assumption.

• Proposed Relational Fusion Network(RFN):

• Consider both the relationships between intersections (nodes) and between 

road segments (edges) jointly.
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Modeling Road Networks

• Model a road network as an attributed directed graph 𝐺 =

(𝑉, 𝐸, 𝐴𝑉 , 𝐴𝐸 , 𝐴𝐵)

• 𝑉: set of nodes(intersections)

• 𝐸: set of edges(roads)

• 𝐴𝑉: attributes of intersections

• 𝐴𝐸: attributes of roads

• 𝐴𝐵: attributes of between-road segments.
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Primal and Dual Graph
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Node : intersection

Edge : road segment

Node : road segment

Edge : between-edge

𝐺𝑃 = (𝑉, 𝐸) 𝐺𝐷 = (𝐸, 𝐵)Source: Wikipedia ‘Line Graph’
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Relational Fusion
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𝑣′ 𝑛′

𝐇𝑣′ 𝐇𝑛′𝐇(𝑣′,𝑛′)

FUSE

FUSE(𝐇𝑣′ , 𝐇 𝑣′,𝑛′ , 𝐇𝑛′)

Representation:

Node NodeEdge

InteractionalFuse offers improved modeling capacity over AdditiveFuse, enabling it to better 

address the challenge of volatile homophily.

trainable interaction weight matrix

InteractionalFuse

AdditiveFuse
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Relational Fusion
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𝑣’

𝑛1
′

𝑛2
′

𝑛3
′

𝐹𝑣′ = FUSE 𝐇𝑣′ , 𝐇 𝑣′,𝑛′ , 𝐇𝑛′ |𝑛′ ∈ 𝑁 𝑣′ ∪ {𝑣′}

𝐇𝑣′,𝑛𝑒𝑤 = AGGREGATE(𝐹𝑣′)

Non-Attentional Aggregator

Attentional Aggregator



J. H. Kim. SNU

Forward Propagation
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Apply Relational Fusion to both primal and dual graph

Note 1) Vertex representations 𝐇𝑉 are concatenated 

to between-edge representations 𝐇𝐵 .

Note 2) Between-edge representations are

transformed using a single feed-forward operator.

𝐺𝑃 = (𝑉, 𝐸) 𝐺𝐷 = (𝐸, 𝐵)
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Relational Fusion Network
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Stack Relational Fusion Layer
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Dataset

• Road Network Data: 

• Aalborg, Denmark

• Attributes:

• Node : zone type (city / rural)

• Edge : road type, length

• Between-Edge : turning angle (right, left, U-turn)

• Target Task:

• Driving speed estimation

• Speed limit classification
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Algorithms

• Grouping Estimator

• Group all road depending on road category and put out the mean value.

• MLP

• Regular multi-layer perceptron that performs predictions independent of adjacent road segments.

• GraphSAGE (Max-Pooling variant)

• GAT

• 4 variants of RFN

13

Note: GCNs are applied on dual graph
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Experimental Results
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Lower is 

better

Higher is 

better
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Case Study: Capturing Volatile Homophily

• RFN is capable of making a much sharper

difference on adjacent roads, while GAT and 

GraphSAGE shows “smooth” homophily.
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Conclusion

• State-of-the-art GCNs are not appropriate for the road network 

setting (cannot support relational attribute, volatile homophily).

• Propose Relational Fusion Network(RFN) that consider both the 

relationships between intersections (nodes) and between road 

segments (edges) jointly.

• Experimental result demonstrates effectiveness of RFN.

• Other applications? 
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Reproduction Result
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• Code is uploaded on my github page:

• https://github.com/juhyeonkim95/GCN2020FinalProject

• Original code:

• https://github.com/TobiasSkovgaardJepsen/relational-fusion-networks

• What is added?

• Road network generation on real cities (Korean cities).    

• Determining node/edge/between-edge attributes.    

• Implementation of baseline models (GraphSAGE, GAT).    

• Miscellaneous things on establishing training/testing environment.

https://github.com/juhyeonkim95/GCN2020FinalProject
https://github.com/TobiasSkovgaardJepsen/relational-fusion-networks
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Reproduction Result

• Details are written in the report. Only summary on PPT.

• Use osmnx library to construct road network.

• Tested on 12 Korean cities (8 for training, 4 for testing).
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Cheongju Goyang Daejeon Daegu
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Reproduction Result

• Input Attributes:

• Node : in-out degree

• Edge : road category, length

• Between-Edge : Turning angle

• Target data:

• I couldn’t obtain historical driving speed data.

• Instead used driving speed data from osmnx default data.

• But speed values are limited to few types + not time-varying..

• seems to be related to road category(대로, 로, 길)
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Road network of Suwon.

Different color means 

different speed.
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Reproduction Result

• Baseline Algorithms:

• MLP / GCN / GraphSAGE / GAT

• 4 RFN variations:

• Fuse : interactional / additional

• Aggregator : attentional / non-attentional

• MXNet / deep graph libray with Pytorch was used.
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Reproduction Result
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Y axis: MSE loss

X axis: iteration

• Trained for 100 iteration.

• Train error per iteration is on 

right graph

• RFN is better than GCNs

• MLP achieves near zero error

• Why?  mini-batch training + 

defect on data(speed depends 

on road category). But gave 

worse result on test data set. 

Seems to be overfitted.

Train error
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Reproduction Result
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• 4 variations of RFN gave better result than baseline models.

• RFN with interactional fuse + attentional aggregator gave was best.
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Reproduction Result

• Conclusion:

• although limited data was used, it was possible to verify the 

effectiveness of RFN over traditional graph convolution networks.

• It was a great experience to be able to actually implement the various 

GCN models I learned in class

• It will be a great help in my future research.
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