
Dynamically Fused Graph Network
for Multi-hop Reasoning (ACL 2019)

Hyunkyung Bae

Seoul National University

1



Multi-hop QA

 Task
 Identify the correct answer from the set of supporting documents.

2



Multi-hop QA challenges

Previous workflow 

Limitations

• Hard to filter out noises and extract useful information from static entity graph

• Answers may not reside in the entity graph

In this work…

• Dynamic entity graph : update entity graph through masks

• Fusion process : find answers from documents

3

Construct

Entity Graph
Apply GNNs

Extract Answer

from the graph



Dynamically Fused Graph Network

4

 Paragraph selection

 Constructing Entity Graph

 Encoding Query and Context

 Reasoning with Fusion Block

 Prediction



Dynamically Fused Graph Network

5

 Paragraph selection

 Constructing Entity Graph

 Encoding Query and Context

 Reasoning with Fusion Block

 Prediction



Dynamically Fused Graph Network

6

 Paragraph selection

 Constructing Entity Graph

 Encoding Query and Context

 Reasoning with Fusion Block

 Prediction



Dynamically Fused Graph Network

7

 Paragraph selection

 Constructing Entity Graph

 Encoding Query and Context

 Reasoning with Fusion Block

 Prediction



Dynamically Fused Graph Network

8

 Paragraph selection

 Constructing Entity Graph

 Encoding Query and Context

 Reasoning with Fusion Block

 Prediction



Dynamically Fused Graph Network

9

 Paragraph selection

 Constructing Entity Graph

 Encoding Query and Context

 Reasoning with Fusion Block

 Prediction



Dynamically Fused Graph Network 

10

 Paragraph selection
 Pre-trained BERT

 Relevance score via sentence classification

 Generate Context

 Construct Entity Graph

 Node from NER (Named Entity Recognization)

 Edge

 Sentence level

 Context-level (links across multiple documents)

 Paragraph-level

 Encoding Query and Context

 BERT

Paragraph

Selection

Construct

Entity Graph

Encoding Query

& Context

Reasoning with 

Fusion Block
Prediction



Dynamically Fused Graph Network 

11

 Fusion Block

• Token2Entity module
• Mean-max pooling in each text span 
• 𝑀𝑖,𝑗 =

ቊ
1 𝑖𝑓 𝑖𝑡ℎ 𝑖𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑡ℎ𝑒 𝑠𝑝𝑎𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑗𝑡ℎ 𝑒𝑛𝑡𝑖𝑡𝑦

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Document to Graph

Paragraph

Selection

Construct

Entity Graph

Encoding Query

& Context

Reasoning with 

Fusion Block
Prediction



Dynamically Fused Graph Network 

12

Dynamic Graph Attention

 Fusion Block

Node
features

Paragraph

Selection

Construct

Entity Graph

Encoding Query

& Context

Reasoning with 

Fusion Block
Prediction

• Soft mask (m): relevance score of 
each entity to query



Dynamically Fused Graph Network 

13

Dynamic Graph Attention

 Fusion Block

GAT

Paragraph

Selection

Construct

Entity Graph

Encoding Query

& Context

Reasoning with 

Fusion Block
Prediction



Dynamically Fused Graph Network 

14

Graph to Document

Updating query

 Fusion Block

Paragraph

Selection

Construct

Entity Graph

Encoding Query

& Context

Reasoning with 

Fusion Block
Prediction



Dynamically Fused Graph Network 

15

 Prediction
 Supporting sentences

 The start position of the answer

 The end position of the answer

 Answer type

Paragraph

Selection

Construct

Entity Graph

Encoding Query

& Context

Reasoning with 

Fusion Block
Prediction



Experiments

 Dataset
 HotpotQA

 BERT Tokenizer

 Pre-trained BERT

 NER from Stanford CoreNLP Toolkit

16



Results

17



Ablation study

18



Reproducing

19



Reproducing the experiment

20

 I failed to write the codes for reproducing the experiment in the paper. So I forked the source 

code from the author github repository and analyzed the code structure instead. 

 Forked repo: https://github.com/jennybae1024/DFGN-pytorch

 The table below is the result of the HotpotQA experiment I’ve run with the author’s code.

 We assume that the learned paragraph selection module checkpoint is provided.

Best score at epoch 7

- EM: exact matching
- PR: precision
- RE: recall
- SP: supporting facts
- JT: Joint performance

Results

https://github.com/jennybae1024/DFGN-pytorch


Code analysis overview

21

 DFGN is composed of three modules

 Paragraph selection

 Text classification

 Fusion block

 Doc2Graph : generate node feature vectors from docs embeddings

 GAT 

 Graph2Doc : update docs embeddings based on node feature vectors from GAT

 Update query : update query embeddings

 Prediction layer

 LSTM

 Layers in Fusion Block

 MeanMaxPooling (Doc2Graph)

 AttentionLayer (GAT)

 InteractionLayer (Graph2Doc / Context update)

 BiAttention (Query update)



22

Code analysis – BasicBlock (Fusion block unit)

 Transform docs embeddings to entity embeddings

 Doc2Graph, GAT, Graph2Doc
 Query update



23

Code analysis - Layers in Fusion Block (tok2ent : MeanMaxPooling)

tok2ent mapping was given

output : entity graph’s node feature vectors

 MeanMaxPooling is used in a tok2ent module, which transforms documents embeddings to entity 

embeddings. 



24

Code analysis - Layers in Fusion Block (AttentionLayer)
• softmax: filter out noise by implementing 

an attention mechanism with Q



25

Code analysis - Layers in Fusion Block (InteractionLayer)

- tok2ent mapping was given.
- The output shape should be compatible 

with the previous context embedding 
matrix.

Context embedding update via LSTM



26

Code analysis - Layers in Fusion Block (BiAttention)

- input_linear_1/2, memory_linear_1/2 
: Linear projection

- Dot-product attention mechanism


