
FeaStNet: Feature-Steered Graph
Convolutions for 3D Shape Analysis

Tae Gyun Ahn

Seoul National University

1

T. G. Ahn. SNU

Correspondence Learning

• given input shapes S1, S2, ⋯ SN,

find a meaningful relation (mapping) between their elements

• requires an understanding of the structure of the shapes

at both local and global levels

2

right arm

T. G. Ahn. SNU

Motivation

 Mesh

• 3D shape models can be represented using mesh

• robust to many shape transformations

• Describe 3D entities more efficiently with discretization that are attached to
shapes

 a graph structured data:

usually consists of vertices, edge, and face data

 Mesh is irregular structure: vertices can have a varying number of neighbors

 CANNOT use CNN

 Need GCN!

3

vertex

edge
face

T. G. Ahn. SNU

1. Dynamically determine the association between filer weights
and the nodes, using learned features of the preceding network layer

2. Can learn correspondences using raw 3D shape coordinates
instead of 3D shape descriptors

3. Can be generalized to 3D data without explicit surface information

4

Contribution

T. G. Ahn. SNU

Related Works: Problems with previous GCN

 1. Spectral Filtering

• Successful with synthetic 3D shape model (noise free data)

• Not suitable for real shape models

• Since global decompositions are unstable across different graphs

 2. Local Filtering

• rely on sub optimal hard-coded methods using local pseudo coordinates

to define filters

5

T. G. Ahn. SNU

Method: CNN

• x𝑛 𝑚,𝑖 ∈ ℝ
𝐷, y𝑖 ∈ ℝ

E, where D and E are number of channels

• W𝑚 ∈ ℝ𝐸×𝐷: weight matrix of 𝑚th neighbor, 𝑏 ∈ ℝE : bias

• 𝑛 𝑚, 𝑖 : global index of 𝑚th neighbor

6

y𝑖 = 𝑏 + ෍

𝑚=1

𝑀

W𝑚x𝑛 𝑚,𝑖

xn 1,𝑖 xn 2,𝑖 xn 3,𝑖

xn 4,𝑖 xn 5,𝑖 xn 6,𝑖

xn 7,𝑖 xn 8,𝑖 xn 9,𝑖

W1 W2 W3

W4 W5 W6

W7 W8 W9

*

feature filter

T. G. Ahn. SNU

Method: GCN using node to weight association

7

x𝑗1

x𝑗2 x𝑖 x𝑗3

x𝑗4

W1 W2 W3

W4 W5 W6

W7 W8 W9

*

feature filter

• 𝑞𝑚(x𝑖 , x𝑗): association - assignment of x𝑗 to W𝑚, σm=1
M 𝑞𝑚(x𝑖 , x𝑗) = 1

𝑦𝑖 = 𝑏 + ෍

𝑚=1

𝑀
1

𝒩𝑖
෍

𝑗∈𝒩𝑖

𝑞𝑚(x𝑖 , x𝑗)W𝑚x𝑗

?

T. G. Ahn. SNU

Method: GCN using node to weight association

• 𝑞𝑚(x𝑖 , x𝑗): association - assignment of x𝑗 to W𝑚, σm=1
M 𝑞𝑚(x𝑖 , x𝑗) = 1

8

𝑦𝑖 = 𝑏 + ෍

𝑚=1

𝑀
1

𝒩𝑖
෍

𝑗∈𝒩𝑖

𝑞𝑚(x𝑖 , x𝑗)W𝑚x𝑗

x𝑗1

𝑞1(x𝑖 , x𝑗1)W1 𝑞2(x𝑖 , x𝑗1)W2 𝑞3(x𝑖 , x𝑗1)W3

𝑞𝟒(x𝑖 , x𝑗𝟏)W4 𝑞𝟓(x𝑖 , x𝑗𝟏)W5 𝑞𝟔(x𝑖 , x𝑗𝟏)W6

𝑞𝟕(x𝑖 , x𝑗𝟏)W7 𝑞𝟖(x𝑖 , x𝑗𝟏W8 𝑞𝟗(x𝑖 , x𝑗𝟏)W9

*

feature filter

T. G. Ahn. SNU

Method: GCN using node to weight association

• 𝑞𝑚 x𝑖 , x𝑗 ∝ exp u𝑚
𝑇 x𝑗 + v𝑚

𝑇 xi + 𝑐𝑚

u𝑚, v𝑚, 𝑐𝑚: parameters of linear transformation.

• Translation invariant in feature space:
𝑞𝑚(x𝑖 , x𝑗) ∝ exp(u𝑚

𝑇 (x𝑗 − xi) + 𝑐𝑚)

• Robust to variations in the degree of the nodes:

σ𝑗∈𝒩𝑖

1

𝒩𝑖
σm=1
M 𝑞𝑚(x𝑖 , x𝑗) = 1

• 𝒩𝑖 can be expended to higher degree neighbors

9

𝑦𝑖 = 𝑏 + ෍

𝑚=1

𝑀
1

𝒩𝑖
෍

𝑗∈𝒩𝑖

𝑞𝑚(x𝑖 , x𝑗)W𝑚x𝑗

T. G. Ahn. SNU

CNN GCN

y𝑖 = 𝑏 + ෍

𝑚=1

𝑀

W𝑚x𝑛 𝑚,𝑖 𝑦𝑖 = 𝑏 + ෍

𝑚=1

𝑀
1

𝒩𝑖
෍

𝑗∈𝒩𝑖

𝑞𝑚(x𝑖 , x𝑗)W𝑚x𝑗

single node x𝑗 - single weight matrix W𝑗 single node x𝑗 - multiple weight matrix W𝑚

𝑚 = 1,… , 𝒩𝑖 (enough with 8)

Cost of computation: 𝒪 𝑁𝑀𝐸𝐷
𝐷 : number of input channel

Cost of computation: 𝒪 𝑁𝑀𝐸 𝐾 + 𝐷

𝐾 : average number of neighbors

Comparison

10

T. G. Ahn. SNU

Experiments

11

Architecture: Lin16+Conv32+Conv64+Conv128+Lin256+Lin6890

Loss: cross-entropy classification loss

3D shape correspondence between 3D meshes using FAUST human shape dataset

(dataset consists of 100 watertight meshes with 6,890 vertices each, corresponding to 10

shapes in 10 different poses each)

3 layer of GCN

8 weight matrices are good enough!

T. G. Ahn. SNU

Experiments

12

Architecture: Lin16+Conv32+Conv64+Conv128+Lin256+Lin6890

Loss: cross-entropy classification loss

3D shape correspondence between 3D meshes using FAUST human shape dataset

(dataset consists of 100 watertight meshes with 6,890 vertices each, corresponding to 10

shapes in 10 different poses each)

Does not need descriptors!

3 layer of GCN

T. G. Ahn. SNU

Experiments

13

Architecture: Lin16+Conv32+Conv64+Conv128+Lin512+Lin2048-MaxPool

3D Part labeling of point clouds from ShapeNet dataset

(16881 shapes from 16 categories, 50 labeled parts)

Points are partially labeled.

16-nearest neighbors were made to sub-graph to learn part labeling

3 layer of GCN

T. G. Ahn. SNU

1. Introduced association between filer weights and the
nodes for convolution of irregular graph structure with
finite filter weights

2. Learned correspondences using raw 3D shape
coordinates instead of 3D shape descriptors

14

Conclusion

T. G. Ahn. SNU

Experiment Reproduction

• 3D shape correspondence between 3D meshes using FAUST human shape dataset

(slide 12)

• Code Link: https://github.com/sw-gong/FeaStNet (Pytorch)

• Requirements

Pytorch (1.3.0) with GPU

Pytorch Geoemtric (1.3.0)

(but worked fine with Pytorch 1.4)

• This code is shared by the author of “SpiralNet++: A Fast and Highly Efficient Mesh Co
nvolution Operator” (ICCV2019). He built this FeaStNet code to compare performance
with his own method(spiralnet++).

• Author of the original paper shared original source code based on TensorFlow, but the c
ode lacks data loader.

• https://github.com/nitika-verma/FeaStNet (TensorFlow)

15

https://github.com/sw-gong/FeaStNet
https://github.com/nitika-verma/FeaStNet

T. G. Ahn. SNU

Experiment Reproduction

• How to Run

• 1. Clone git https://github.com/sw-gong/FeaStNet

• 2. Download FAUST data set from the homepage
• http://faust.is.tue.mpg.de/

• (we did not included the dataset to the git due to the size)

• 3. Make directory data/FAUST/raw in FeaStNet

• 4. Move MPI-FAUST.zip (uncompressed) to the above directory

• 5. run python main.py in FeaStNet

16

https://github.com/sw-gong/FeaStNet
http://faust.is.tue.mpg.de/

T. G. Ahn. SNU

Reproduction Results

17

dataset consists of 100 watertight meshes with 6,890 vertices each

80 meshes were used for training and 20 meshes are used for testing

Dataset was trained for 1000 epochs

Accuracy: 93.4 %

This experiment corresponds to

FeaStNet without refinement. Fi

nal accuracy was bit higher than

the accuracy reported on paper

reproduction original

T. G. Ahn. SNU

Code Explanation

• About the data set

• Faust data set is given as .ply file which include ‘vertices’ with x,y,z c
oordinates and ‘face’ with vertices index of the face

• The order of the vertices are corresponding points.

• Ex) if first vertex of human data1 and first vertex of human data2 are
corresponding points

• Therefore, goal is to figure out the number of the vertex when x,y,z c
oordinates and faces are given

18

T. G. Ahn. SNU

Code Explanation

19

core part of main.py
.ply file of FAUST dataset does n

ot have adjacency list. This part

makes adjacency list of mesh ver

tices using face vertices index inf

ormation

1. Load train and test data

2. Set network model to netw

ork proposed in FeaStNet

3. Set optimizer(Adam optimizer)

4. Execute training

T. G. Ahn. SNU

Code Explanation

20

2. Setting Network (/models/networks.py)

Set network architecture to the proposed architecture in

slide 11:

Lin16+Conv32+Conv64+Conv128+Lin256+Lin6890

T. G. Ahn. SNU

Code Explanation

21

2. Setting Network – Defining graph convolution (models/conv/feastconv.py)

Setting weights for graph convolution:

W𝒎, 𝒖𝒎, 𝒗𝒎, 𝒄𝒎, 𝒃

𝑦𝑖 = 𝒃 + ෍

𝑚=1

𝑀
1

𝒩𝑖
෍

𝑗∈𝒩𝑖

𝑞𝑚(x𝑖 , x𝑗)W𝒎x𝑗

𝑞𝑚 x𝑖 , x𝑗 ∝ exp 𝒖𝒎
𝑻 x𝑗 + 𝒗𝒎

𝑻 xi + 𝒄𝒎

*Translation invariant version:

𝑞𝑚(x𝑖 , x𝑗) ∝ exp(𝒖𝒎
𝑻 (x𝑗 − xi) + 𝒄𝒎)

T. G. Ahn. SNU

Code Explanation

22

2. Setting Network – Defining graph convolution (models/conv/feastconv.py)

• 2. Convolution:

෍

𝑚=1

𝑀
1

𝒩𝑖
෍

𝑗∈𝒩𝑖

𝑞𝑚(x𝑖 , x𝑗)W𝒎x𝑗

 Translation invariant version:

𝑞𝑚(x𝑖 , x𝑗) ∝ exp(𝒖𝒎
𝑻 (x𝑗 − xi) + 𝒄𝒎)

 General version:

𝑞𝑚 x𝑖 , x𝑗 ∝ exp 𝒖𝒎
𝑻 x𝑗 + 𝒗𝒎

𝑻 xi + 𝒄𝒎

• 1. Setting association: 𝑞𝑚(x𝑖 , x𝑗)

 Add bias:

𝑦𝑖 = 𝑏 + ෍

𝑚=1

𝑀
1

𝒩𝑖
෍

𝑗∈𝒩𝑖

𝑞𝑚(x𝑖 , x𝑗)W𝒎x𝑗

T. G. Ahn. SNU

Code Explanation

23

4. Execute training (line 65 of main.py) (utils/train_eval.py)

 train

 test

T. G. Ahn. SNU

Code Explanation

24

4. Execute training (line 65 of main.py) (utils/train_eval.py)

 train

 test

T. G. Ahn. SNU

Code Explanation

25

4. Execute training (utils/train_eval.py)

 train

 test

negative log likelihood loss

Accuracy is calculated:

number of correct prediction divided

by number of vertices

Prediction is made by feeding test

data to the model extracting feature

with highest value

