
Capsule Graph Neural Network
Zhang et al., ICLR 2019

1

2020/06/10

Jae-Won Chung

Seoul National University

Outline

1. Background: Capsule, CapsNet

2. CapsGNN: Motivation, Architecture

3. Evaluation: Graph Classification, Capsule Efficiency

4. Conclusion and Critique

2Jae-Won Chung

Background: Capsule

Transforming Auto-encoders, Hinton et al., 2011

Dynamic Routing between Capsules, Sabour et al., 2017

Capsule Graph Neural Network, Zhang et al., 2019

3

Capsule

Dynamic
Routing

CapsNet CapsGNN

Jae-Won Chung

𝑤2

Background: Capsule

4

Σ 𝜎(⋅)

neuron 𝑗

Σ squash(⋅)

capsule 𝑗

ℎ𝑗 𝒖𝑗
𝒍+𝟏

𝑤3

𝑤1

𝑥1

𝑥2

𝑥3

𝑐2𝑗

𝑐3𝑗

𝑐1𝑗
ෝ𝒖𝑗|1

ෝ𝒖𝑗|2

ෝ𝒖𝑗|2

𝑾2

𝑾3

𝑾1𝒖1
𝑙

𝒖2
𝑙

𝒖3
𝑙

 scalar in scalar out
• intensity of filter match

 max pool on ℎ𝑗 loses information

 vector in vector out
• length: the probability of existence
• orientation: the entity’s current state

 no max pool; preserves information

Jae-Won Chung

𝑐2𝑗

𝑐3𝑗

𝑐1𝑗

Dynamic Routing:
determines 𝑐𝑖 during forward pass

Background: CapsNet

5Dynamic Routing between Capsules, Sabour et al, 2017

9x9 conv, 256
activated by ReLU

9x9 conv, 4 x 8
activated by squash

viewed as outputs
from 4 capsules
with dimension 8

dynamic routing
capsules: 4 → 10
dimension: 8 → 16

output vector length
is probability!

Jae-Won Chung

Background: CapsNet

6

→ Hinge loss

→ Recon. loss

Jae-Won Chung

CapsGNN: Motivation

Simple aggregations in GCNs treat the learned node embeddings as
merely an array of scalar features, rather than a meaningful vector in
the feature space.
 Element-wise max-pooling on the node features [Zhang et al., 2018]

 Taking the element-wise covariance across nodes [Verma & Zhang, 2018]

Graph embeddings must also capture the position of and structure
around each node. Scalar neuron outputs lack representation power.

7Jae-Won Chung

CapsGNN: Architecture

8Capsule Graph Neural Network, Zhang et al, 2019

1D conv
activated by squash

𝐿 capsules
learned attention

across nodes

dynamic routing

output vector length
is probability!

𝐿-layer
Simplified
ChebNet

Jae-Won Chung

Evaluation: Graph Classification

9

biological datasets social datasets

approaches or surpasses SOTA on 6 of 10 datasets

Jae-Won Chung

Evaluation: Capsule Efficiency

10Jae-Won Chung

• scalar network
• replace capsule layers with fully-connected layers

• adjust weights s.t. the number of trainable weights is similar

Conclusion and Critique

Used capsules for graph classification.

Extended CapsNet with clear reasons and proved its efficacy
through SOTA performance.

No ablation study of the attention module.

Comparison with GCAPS-CNN[Verma & Zhang, 2018] is incomplete.

11Jae-Won Chung

Code

12

Code: Introduction

 The author’s implementation is available.
 https://github.com/XinyiZ001/CapsGNN

 Capsules based on https://github.com/naturomics/CapsNet-Tensorflow

 This guide will walk you through:
 graph classification datasets

 GEXF, a standard format for graph data

 graph data preprocessing

 tensorflow implementation of CapsGNN

 how to run the model + my results

Emphasis is on providing a kick-start for those new to graph
classification.

13Jae-Won Chung

https://github.com/XinyiZ001/CapsGNN
https://github.com/naturomics/CapsNet-Tensorflow

Code: Graph Classification Datasets

Bio datasets: composed of N discrete labels, each with C classes
 MUTAG (binary): chemical → 7 types of mutagenic effects

 ENZYMES: enzyme → 6 EC (enzyme commission) of 3 top-level classes

 NCI1 (binary): chemical → anticancer effects on 37 tumor types

 PROTEINS (binary): protein → 3 protein properties (helix, sheet, turn)

 D&D (binary): protein → 82 protein classes

14Jae-Won Chung

Code: Graph Classification Datasets

Bio datasets: SOTA as of 2020.06.19 (source: paperswithcode)
 MUTAG (binary): 95.00% (G_Inception)

 ENZYMES (6 classes): 78.39% (DSGCN-allfeat)

 NCI1 (binary): 87.2% (WKPI-kmeans)

 PROTEINS (binary): 84.91% (HGP-SL)

 D&D (binary): 95.67% (U2GNN-unsupervised)

15Jae-Won Chung

Code: Graph Classification Datasets

Social datasets: one label with C classes
 COLLAB: collaboration graph of a researcher → one of 3 research domains

 IMDB: actor graph of a movie → which genre is this movie?
 2 versions: binary (IMDB-B) and 3 classes (IMDB-M)

 Reddit: user comment graph of a thread → which sub-reddit is this from?
 3 versions: binary (RE-B), 5 classes (RE-M5K), and 11 classes (RE-M11K)

16Jae-Won Chung

Code: Graph Classification Datasets

Social datasets: SOTA as of 2020.06.19 (source: paperswithcode)
 COLLAB (3 classes): 95.62% (U2GNN-unsupervised)

 IMDB
 IMDB-B (binary): 93.5% (U2GNN-unsupervised)

 IMDB-M (3 classes): 74.8% (U2GNN-unsupervised)

 Reddit
 RE-B (binary): 92.4% (GIN-0)

 RE-M5K (5 classes): 57.5% (GIN-0)

 RE-M11K (11 classes): 49.75% (GFN-light)

17Jae-Won Chung

Code: Graph Classification Datasets

GEXF formats of the datasets can be obtained at:
 https://drive.google.com/drive/folders/1qXx-OZlJtgRYn579aQX13ou2hutqJz41?usp=sharing

 What is GEXF?

18Jae-Won Chung

https://drive.google.com/drive/folders/1qXx-OZlJtgRYn579aQX13ou2hutqJz41?usp=sharing

Code: Standard Graph Data Formats

NetworkX: a widely used python package for graph data processing
 Supported graph formats

 https://networkx.github.io/documentation/stable/reference/readwrite/index.html#

GEXF is a standard graph data format supported by NetworkX.
 Graph Exchange XML Format

 See https://gephi.org/gexf/format/ for full specification

19Jae-Won Chung

https://networkx.github.io/documentation/stable/reference/readwrite/index.html
https://gephi.org/gexf/format/

Code: GEXF

<?xml version="1.0" encoding="UTF-8"?>
<gexf xmlns="http://www.gexf.net/1.2draft" version="1.2">

<meta lastmodifieddate="2009-03-20">
<creator>Gexf.net</creator>
<description>A hello world! file</description>

</meta>
<graph mode="static" defaultedgetype="directed">

<nodes>
<node id="0" label="Hello" />
<node id="1" label="Word" />

</nodes>
<edges>

<edge id="0" source="0" target="1" />
</edges>

</graph>
</gexf>

20Jae-Won Chung

list of nodes

list of edges

Code: Preprocessing for TensorFlow

See dataset_utils/preprosessing.py

Preprocessing data flow:
1. Read every .gexf file with NetworkX (here).

2. For each node in graph, parse according to attribute list (here).

3. Create the graph’s adjacency matrix and add self-connections (here).
• Used the COO (coordinate format) sparse matrix format for compression!

4. Final preprocessing results for each graph are (here):
• adjacency matrix

• node input attributes

• node reconstruction attributes (for reconstruction loss)

• graph classification labels

5. Serialize and save with the python built-in pickle module (here).

21Jae-Won Chung

https://github.com/XinyiZ001/CapsGNN/blob/b5af1ce21de2bf0d0786116dff7d5162341010be/dataset_utils/preprocessing.py#L169
https://github.com/XinyiZ001/CapsGNN/blob/b5af1ce21de2bf0d0786116dff7d5162341010be/dataset_utils/preprocessing.py#L174
https://github.com/XinyiZ001/CapsGNN/blob/master/dataset_utils/preprocessing.py#L205-L207
https://github.com/XinyiZ001/CapsGNN/blob/master/dataset_utils/preprocessing.py#L220-L225
https://github.com/XinyiZ001/CapsGNN/blob/master/dataset_utils/preprocessing.py#L227-L229

Code: TensorFlow Model Implementation

See capsule_utils/GraphCap_net.py

22Jae-Won Chung

node embedding
node attention

graph embedding
class capsules

https://github.com/XinyiZ001/CapsGNN/blob/master/capsules_utils/GraphCap_net.py#L61-L81
https://github.com/XinyiZ001/CapsGNN/blob/master/capsules_utils/GraphCap_net.py#L83-L91
https://github.com/XinyiZ001/CapsGNN/blob/master/capsules_utils/GraphCap_net.py#L93-L112
https://github.com/XinyiZ001/CapsGNN/blob/master/capsules_utils/GraphCap_net.py#L114-L119

Code: TensorFlow Model Implementation

Node embedding
 The number of channels (Ci, Co) and GCN layers (L) are configured here.

 The node embedding dimension (d) is configured here.

 The node embedding operations are encapsulated here.
1. Transform channel size from Ci*d to Co*d with tf.layers.conv2d.

2. Perform message-passing by multiplying the normalized transition matrix.

3. Activate output with tf.nn.tanh.

4. Reshape to shape (Batch, N, Co, d), where N is the number of nodes.

23Jae-Won Chung

https://github.com/XinyiZ001/CapsGNN/blob/b5af1ce21de2bf0d0786116dff7d5162341010be/config.py#L38
https://github.com/XinyiZ001/CapsGNN/blob/b5af1ce21de2bf0d0786116dff7d5162341010be/config.py#L16
https://github.com/XinyiZ001/CapsGNN/blob/b5af1ce21de2bf0d0786116dff7d5162341010be/capsules_utils/module.py#L31-L56

Code: TensorFlow Model Implementation

Node attention
 The node attention operations are encapsulated here.

1. Input and output tensor shapes are both (Batch, N, C, d).

2. Input features are transformed with two consecutive tf.layers.dense.

3. The first FC layer reduces the channel by a factor of 16, and the second restores it.

4. Attention weights are generated after a final node-dimension softmax operation.

5. The input tensor is attended by multiplying the attention weights and returned directly.

24Jae-Won Chung

https://github.com/XinyiZ001/CapsGNN/blob/b5af1ce21de2bf0d0786116dff7d5162341010be/capsules_utils/module.py#L59-L82

Code: TensorFlow Model Implementation

Graph embedding
 Code allows the configuration of the number of graph embedding layers, alth

ough the paper used only one layer. Seems like the authors once tried multip
le graph embedding layers.

 The graph embedding operations are encapsulated here.
1. Two large operations: transforming the input matrix (here), and dynamic routing (here)

.

2. To input features to capsules, they should be evenly split by the number of capsules a
nd transformed with the weight matrix to match capsule input dimensions.

3. A single weight matrix is generated with tf.contrib.slim.variable, and repeated
Batch*N times. The input matrix is transformed with tf.matmul.

4. Code for dynamic routing was borrowed from the CapsNet implementation here.

5. Capsule outputs are activated with squash, an activation function for vectors.

25Jae-Won Chung

https://github.com/XinyiZ001/CapsGNN/blob/b5af1ce21de2bf0d0786116dff7d5162341010be/capsules_utils/module.py#L85-L139
https://github.com/XinyiZ001/CapsGNN/blob/b5af1ce21de2bf0d0786116dff7d5162341010be/capsules_utils/module.py#L287-L345
https://github.com/XinyiZ001/CapsGNN/blob/b5af1ce21de2bf0d0786116dff7d5162341010be/capsules_utils/module.py#L348-L374
https://github.com/naturomics/CapsNet-Tensorflow/blob/5b464caab361ec402c1b17acb9bc2680e5fbb7de/capsLayer.py#L84

Code: TensorFlow Model Implementation

Class capsules
 The class capsule operations are encapsulated here.

1. The implementation is essentially the same as the graph embedding layer.

2. Differences come from the name of configuration parameters.

3. The output of class capsules are used for classification.

26Jae-Won Chung

https://github.com/XinyiZ001/CapsGNN/blob/b5af1ce21de2bf0d0786116dff7d5162341010be/capsules_utils/module.py#L142-L175

Code: TensorFlow Model Implementation

 Loss
 The lambda value for the margin loss can be configured here.

 This is important! The authors note that they set this value to 1.0 for binary classification
tasks, and 0.5 for multi-class classification tasks.

 The scaling factor on the reconstruction loss can be configured here.

 The loss function is encapsulated here.
 The implementation of margin loss (used as classification loss) is straightforward.

 The reconstruction loss is the mean L2 error between the actual and reconstructed input
.

 The input is reconstructed by 1) extracting the capsule output of the correct class, 2) pas
sing it through two tf.contrib.layers.fully_connected layers, and 3) activating wit
h tf.nn.sigmoid.

 The final loss is margin_loss + scale * recon_loss.

27Jae-Won Chung

https://github.com/XinyiZ001/CapsGNN/blob/b5af1ce21de2bf0d0786116dff7d5162341010be/config.py#L24
https://github.com/XinyiZ001/CapsGNN/blob/b5af1ce21de2bf0d0786116dff7d5162341010be/config.py#L30
https://github.com/XinyiZ001/CapsGNN/blob/b5af1ce21de2bf0d0786116dff7d5162341010be/capsules_utils/module.py#L178-L231

Code: TensorFlow Model Implementation

 Training
 The training code is standard and straightforward. Implemented here.

 Used Adam as optimizer and applied 0.9 exponential learning rate decay ev
ery 20000 steps.

 The base learning rate and decay rate can be configured here.

28Jae-Won Chung

https://github.com/XinyiZ001/CapsGNN/blob/master/capsules_utils/GraphCap_net.py#L143-L148
https://github.com/XinyiZ001/CapsGNN/blob/master/config.py#L20-L22

Code: Running the Model

Environment
 I wrote a Dockerfile that handles all dependencies. Find it here.

 You will need to add the NVIDIA container runtime to utilize GPUs. See here.

 Run the container with:
 docker build -t capsgnn .

 docker run -it --gpus all -v <path to capsgnn>:/workspace --name caps c
apsgnn bash

 I find it sensible to mount the code directory to the container, since we want to keep the preproces
sed data even when the container crashes.

29Jae-Won Chung

https://gist.github.com/jaywonchung/6f7689077362bc2e27aefbbca6539c80
https://github.com/NVIDIA/nvidia-container-runtime

Code: Running the Model

Preprocessing the ENZYMES dataset
 python dataset_utils/preprocessing.py \

--dataset_input_dir graph_gexf/ENZYMES \
--output_data_dir data_plk \
--pickle_v 3 \
--x_fold 10 \
--gen_split_file True

 This creates data for 10-fold cross validation, which is what the authors did.

30Jae-Won Chung

Code: Running the Model

 Training CapsGNN on ENZYMES
 python main.py \

--dataset_dir data_plk/ENZYMES \
--epochs 3000 \
--lambda_val 0.5

 This trains CapsGNN for 3000 epochs.

31Jae-Won Chung

Code: Results

 I’m a poor undergraduate, without enough computation power. 

 I ran training and inference only on the ENZYMES dataset.

 The training script produces a large accuracy log file. I wrote a script
to extract the test-set accuracy of the moment the validation-set acc
uracy is highest, for each cross-validation run. Find the script here.

My result
 60.00, 61.67, 50.00, 41.67, 61.67, 60.00, 58.33, 51.67, 41.67, 50.00

 average: 53.67, std: 7.41

Paper claims
 average: 54.67, std: 5.67

32Jae-Won Chung

https://gist.github.com/jaywonchung/13988cd55839e2f6e15154560f4bad4b

