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Correspondence Learning 

• given input shapes S1, S2, ⋯ SN,

find a meaningful relation (mapping) between their elements

• requires an understanding of the structure of the shapes

at both local and global levels
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Motivation

 Mesh

• 3D shape models can be represented using mesh

• robust to many shape transformations

• Describe  3D entities more efficiently with discretization that are attached to 
shapes

 a graph structured data: 

usually consists of vertices, edge, and face data

 Mesh is irregular structure: vertices can have a varying number of neighbors

 CANNOT use CNN 

 Need GCN!
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1. Dynamically determine the association between filer weights 
and the nodes, using learned features of the preceding network layer

2. Can learn correspondences using raw 3D shape coordinates 
instead of 3D shape descriptors

3. Can be generalized to 3D data without explicit surface information
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Related Works: Problems with previous GCN

 1. Spectral Filtering

• Successful with synthetic 3D shape model (noise free data)

• Not suitable for real shape models 

• Since global decompositions are unstable across different graphs

 2. Local Filtering

• rely on sub optimal hard-coded methods using local pseudo coordinates

to define filters
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Method: CNN

• x𝑛 𝑚,𝑖 ∈ ℝ
𝐷, y𝑖 ∈ ℝ

E, where D and E are number of channels

• W𝑚 ∈ ℝ𝐸×𝐷: weight matrix of 𝑚th neighbor, 𝑏 ∈ ℝE : bias

• 𝑛 𝑚, 𝑖 : global index of 𝑚th neighbor 
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Method: GCN using node to weight association
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• 𝑞𝑚(x𝑖 , x𝑗): association - assignment of x𝑗 to W𝑚, σm=1
M 𝑞𝑚(x𝑖 , x𝑗) = 1
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Method: GCN using node to weight association

• 𝑞𝑚(x𝑖 , x𝑗): association - assignment of x𝑗 to W𝑚, σm=1
M 𝑞𝑚(x𝑖 , x𝑗) = 1
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Method: GCN using node to weight association

• 𝑞𝑚 x𝑖 , x𝑗 ∝ exp u𝑚
𝑇 x𝑗 + v𝑚

𝑇 xi + 𝑐𝑚

u𝑚, v𝑚, 𝑐𝑚: parameters of linear transformation.

• Translation invariant in feature space: 
𝑞𝑚(x𝑖 , x𝑗) ∝ exp(u𝑚

𝑇 (x𝑗 − xi) + 𝑐𝑚)

• Robust to variations in the degree of the nodes:

σ𝑗∈𝒩𝑖

1

𝒩𝑖
σm=1
M 𝑞𝑚(x𝑖 , x𝑗) = 1

• 𝒩𝑖 can be expended to higher degree neighbors
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CNN GCN

y𝑖 = 𝑏 + ෍

𝑚=1

𝑀

W𝑚x𝑛 𝑚,𝑖 𝑦𝑖 = 𝑏 + ෍

𝑚=1

𝑀
1

𝒩𝑖
෍

𝑗∈𝒩𝑖

𝑞𝑚(x𝑖 , x𝑗)W𝑚x𝑗

single node x𝑗 - single weight matrix W𝑗 single node x𝑗 - multiple weight matrix W𝑚

𝑚 = 1,… , 𝒩𝑖 (enough with 8) 

Cost of computation: 𝒪 𝑁𝑀𝐸𝐷
𝐷 : number of input channel

Cost of computation: 𝒪 𝑁𝑀𝐸 𝐾 + 𝐷

𝐾 : average number of neighbors 

Comparison
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Experiments
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Architecture: Lin16+Conv32+Conv64+Conv128+Lin256+Lin6890

Loss: cross-entropy classification loss

3D shape correspondence between 3D meshes using FAUST human shape dataset 

(dataset consists of 100 watertight meshes with 6,890 vertices each, corresponding to 10 

shapes in 10 different poses each)

3 layer of GCN

8 weight matrices are good enough!
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Experiments
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Architecture: Lin16+Conv32+Conv64+Conv128+Lin256+Lin6890

Loss: cross-entropy classification loss

3D shape correspondence between 3D meshes using FAUST human shape dataset 

(dataset consists of 100 watertight meshes with 6,890 vertices each, corresponding to 10 

shapes in 10 different poses each)

Does not need descriptors!

3 layer of GCN
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Experiments
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Architecture: Lin16+Conv32+Conv64+Conv128+Lin512+Lin2048-MaxPool

3D Part labeling of point clouds from ShapeNet dataset 

(16881 shapes from 16 categories, 50 labeled parts) 

Points are partially labeled.

16-nearest neighbors were made to sub-graph to learn part labeling

3 layer of GCN
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1. Introduced association between filer weights and the 
nodes for convolution of irregular graph structure with 
finite filter weights 

2. Learned correspondences using raw 3D shape 
coordinates instead of 3D shape descriptors
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Conclusion
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Experiment Reproduction

• 3D shape correspondence between 3D meshes using FAUST human shape dataset 

(slide 12)

• Code Link: https://github.com/sw-gong/FeaStNet (Pytorch)

• Requirements

Pytorch (1.3.0) with GPU

Pytorch Geoemtric (1.3.0)

(but worked fine with Pytorch 1.4) 

• This code is shared by the author of “SpiralNet++: A Fast and Highly Efficient Mesh Co
nvolution Operator” (ICCV2019). He built this FeaStNet code to compare performance 
with his own method(spiralnet++). 

• Author of the original paper shared original source code based on TensorFlow, but the c
ode lacks data loader. 

• https://github.com/nitika-verma/FeaStNet (TensorFlow)
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Experiment Reproduction

• How to Run

• 1. Clone git https://github.com/sw-gong/FeaStNet

• 2. Download FAUST data set from the homepage
• http://faust.is.tue.mpg.de/

• (we did not included the dataset to the git due to the size)

• 3. Make directory data/FAUST/raw in FeaStNet

• 4. Move MPI-FAUST.zip (uncompressed) to the above directory

• 5. run python main.py in FeaStNet
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Reproduction Results
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dataset consists of 100 watertight meshes with 6,890 vertices each

80 meshes were used for training and 20 meshes are used for testing

Dataset was trained for 1000 epochs

Accuracy: 93.4 %

This experiment corresponds to 

FeaStNet without refinement. Fi

nal accuracy was bit higher than 

the accuracy reported on paper

reproduction original
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Code Explanation

• About the data set

• Faust data set is given as .ply file which include ‘vertices’ with x,y,z c
oordinates and ‘face’ with vertices index of the face

• The order of the vertices are corresponding points.

• Ex) if first vertex of human data1 and first vertex of human data2 are 
corresponding points

• Therefore, goal is to figure out the number of the vertex when x,y,z c
oordinates and faces are given
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Code Explanation
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core part of main.py
.ply file of FAUST dataset does n

ot have adjacency list. This part 

makes adjacency list of mesh ver

tices using face vertices index inf

ormation 

1. Load train and test data 

2. Set network model to netw

ork proposed in FeaStNet

3. Set optimizer( Adam optimizer)

4. Execute training
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Code Explanation

20

2. Setting Network (/models/networks.py) 

Set network architecture to the proposed architecture in 

slide 11:

Lin16+Conv32+Conv64+Conv128+Lin256+Lin6890
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Code Explanation
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2. Setting Network – Defining graph convolution (models/conv/feastconv.py)

Setting weights for graph convolution: 

W𝒎, 𝒖𝒎, 𝒗𝒎, 𝒄𝒎, 𝒃

𝑦𝑖 = 𝒃 + ෍

𝑚=1

𝑀
1

𝒩𝑖
෍

𝑗∈𝒩𝑖

𝑞𝑚(x𝑖 , x𝑗)W𝒎x𝑗

𝑞𝑚 x𝑖 , x𝑗 ∝ exp 𝒖𝒎
𝑻 x𝑗 + 𝒗𝒎

𝑻 xi + 𝒄𝒎

*Translation invariant version: 

𝑞𝑚(x𝑖 , x𝑗) ∝ exp(𝒖𝒎
𝑻 (x𝑗 − xi) + 𝒄𝒎)
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Code Explanation
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2. Setting Network – Defining graph convolution (models/conv/feastconv.py)

• 2. Convolution:

෍

𝑚=1

𝑀
1

𝒩𝑖
෍

𝑗∈𝒩𝑖

𝑞𝑚(x𝑖 , x𝑗)W𝒎x𝑗

 Translation invariant version: 

𝑞𝑚(x𝑖 , x𝑗) ∝ exp(𝒖𝒎
𝑻 (x𝑗 − xi) + 𝒄𝒎)

 General version:

𝑞𝑚 x𝑖 , x𝑗 ∝ exp 𝒖𝒎
𝑻 x𝑗 + 𝒗𝒎

𝑻 xi + 𝒄𝒎

• 1. Setting association: 𝑞𝑚(x𝑖 , x𝑗)

 Add bias:

𝑦𝑖 = 𝑏 + ෍

𝑚=1

𝑀
1

𝒩𝑖
෍

𝑗∈𝒩𝑖

𝑞𝑚(x𝑖 , x𝑗)W𝒎x𝑗
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Code Explanation
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4. Execute training (line 65 of main.py) (utils/train_eval.py)

 train

 test
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Code Explanation
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4. Execute training (line 65 of main.py) (utils/train_eval.py)

 train

 test
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Code Explanation

25

4. Execute training (utils/train_eval.py)

 train

 test

negative log likelihood loss

Accuracy is calculated:

number of correct prediction divided 

by number of vertices

Prediction is made by feeding test 

data to the model extracting feature 

with highest value


