
Geometric Matrix Completion with
Recurrent Multi-Graph Neural Networks

Federico Monti, Michael M. Bronstein, and Xavier Bresson

NIPS 2017

1

Presenter : Mineui Hong

J. Y. Choi. SNU

Recommendation & Matrix Completion

2

Geometric Matrix Completion

min
𝑋

𝑋 𝑔𝑟
2 + 𝑋 𝑔𝑐

2 +
𝜇

2
Ω ∘ 𝑋 − 𝑌 𝐹

2

Smoothness over
row/column-graph
𝑋 𝑔𝑟

2 = 𝑡𝑟𝑎𝑐𝑒 𝑋𝑇∆𝑟𝑋

Error on labeled data

Multi-Graph Convolution

J. Y. Choi. SNU

Multi-Graph Convolutional Neural Network (MGCNN)

3

1-Dimensional 2-Dimensional

Graph Laplacian

∆= ΦΛΦT

Λ = diag λ1, ⋯ , λn
Φ ∶ eigenvector matrix

∆c= ΦcΛcΦc
T,

∆r= ΦrΛrΦr
T

Fourier Transform ෡X = ΦTX ෡X = Φr
TXΦc

Convolution Operation
X ∗ Y = Φ ΦTX ∘ ΦTY

= Φ ෡X ∘ ෡Y
X ∗ Y = Φr

෡X ∘ ෡Y Φc
T

Chebychev Polynomial

Filter

τθ λ =෍

j=0

p

θjTj ෨λ ,

෨λ ∈ −1,1

τΘ λc, λr = ෍

j,j′=0

p

θj,j′Tj ෨λc Tj′ ෨λr

Graph CNN

෩Xl = ξ ෍

l′=1

q′

෍

j=0

p

θj,ll′Tj ෨∆ Xl

𝑙′, 𝑙 : input / output channel

𝜉 : nonlinearity function

෩Xl = ξ ෍

l′=1

q′

෍

j,j′=0

p

θjj′,ll′Tj ෨∆r Xl′Tj′ ෨∆c

J. Y. Choi. SNU

Recurrent MGCNN (RMGCNN)

4

Matrix Diffusion : Make small changes for each step

𝑛 movies

𝑚 users

Loss :

𝑋Θ,𝜎
𝑇

𝑔𝑟

2
+ 𝑋Θ,𝜎

𝑇

𝑔𝑐

2
+
𝜇

2
Ω ∘ 𝑋Θ,𝜎

𝑇
− 𝑌

𝐹

2

Complexity : 𝑂 𝑚𝑛

J. Y. Choi. SNU

Separable RMGCNN (sRMGCNN)

5

Loss :

𝑊Θr,𝜎
𝑇

𝑔𝑟

2
+ 𝐻Θc,𝜎

𝑇

𝑔𝑐

2
+
𝜇

2
Ω ∘ 𝑊Θr,𝜎

𝑇
𝐻Θc,𝜎

𝑇
T
− 𝑌

𝐹

2

Total Learning Complexity : 𝑂(𝑛 + 𝑚)
Matrix Factorization

𝑋 = 𝑊𝐻𝑇 ∶ 𝑛 × 𝑚
𝑊 ∶ 𝑛 × 𝑟, 𝐻 ∶ 𝑚 × 𝑟 𝑟 ≪ 𝑛,𝑚

𝑂(𝑟𝑚)

𝑂(𝑟𝑛)

J. Y. Choi. SNU

Experimental Results

6

Evolution of matrix 𝑋(𝑡)

RMS error :

RMGCNN

sRMGCNN

J. Y. Choi. SNU

Experimental Results

MovieLens dataset

Other dataset

J. Y. Choi. SNU

Reproduction

Code is based on the authors’ implementation (https://github.com/fmonti/mgcnn/),
and modified for running it on Python3.6 & trying simplified Chebyshev filter.

Modified Code : https://github.com/mini-hong/sRMGCNN

Tested Environment :
- Python 3.6
- Tensorflow 1.13.1
- Other Requirements : joblib, h5py, scipy, matplotlib

https://github.com/fmonti/mgcnn/
https://github.com/mini-hong/sRMGCNN

J. Y. Choi. SNU

Code explanation

Matrix of the given data & user/item graph weights
are loaded from dataset

Construct graph Laplacians of user/item graph
from the loaded data

Apply SVD and do matrix factorization
by selecting top 10 rank of the original matrix

J. Y. Choi. SNU

Code explanation

Define network parameters and initial matrix

J. Y. Choi. SNU

Code explanation
Define multi-graph convolution network

Define LSTM network for matrix diffusion

Reconstruct matrix at each step of matrix diffusion

J. Y. Choi. SNU

Code explanation

Define the loss function and train the network parameters

J. Y. Choi. SNU

Reproduction results

Dataset RMSE (paper) RMSE (reproduction)

MovieLens 0.929 0.9331

Flixter 0.9258 0.9326

Douban 0.8012 0.7929

YahooMusic 22.4149 21.9876

For the all of datasets, the performance of the sRMGCNN was well reproduced.

J. Y. Choi. SNU

Additional experiments

Performance of sRMGCNN changes as the rank of matrix factorization changes (Tested in MovieLens dataset).

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

3 5 7 10 12 15

R
M

S
E

Matrix Factorization Rank

Matrix Factorization Rank RMSE

3 0.9759

5 0.9614

7 0.9466

10 (paper) 0.9331

12 0.9384

15 0.9725

The rank of 10 (which is used for experiments reported in the paper), shows the best performance.
The ranks larger than 10 may need to be trained for more training iterations.

J. Y. Choi. SNU

Additional experiments

Performance of sRMGCNN using Chebyshev polynomial (order=5) and using Simplified ShevNet
(Tested in MovieLens dataset).

Graph Filter RMSE Training Time (s)

ChebNet (order=5) 0.9331 0.0363

Simplified ChebNet 1.019 0.0250

Code :

Using ShevNet shows faster training time, however it greatly degrades the performance (RMSE)

J. Y. Choi. SNU

Conclusion

16

• Generalize a graph convolutional network into
a multi-graph convolutional network

• Handle the matrix completion problem with
multi-graph CNN + matrix diffusion using RNN structure

• Simple & efficient algorithm,
seems to be practical to apply on various large-scale applications.

J. Y. Choi. SNU

Thank You

17

