
GCAN:
Graph Convolutional Adversarial Network for
Unsupervised Domain Adaptation
(X. Ma, T. Zhang, and C. Xu. In CVPR 2019)

컴퓨터공학부 2020-39297 최은태

Unsupervised Domain Adaptation

General domain adaptation problem

Source data 𝐷𝑆 → Target data 𝐷𝑇

Covariate shift

Categorization by label accessibility

Supervised Domain Adaptation (SDA): Labeled 𝐷𝑆 → Labeled 𝐷𝑇
• Jointly train on 𝐷𝑆 & 𝐷𝑇 with full-supervision

Unsupervised Domain Adaptation (UDA): Labeled 𝐷𝑆 → Unlabeled 𝐷𝑇
• Should align the feature distributions of 𝐷𝑇 to source domain

Adversarial Training-Based Approach

Consider a CNN with a feature extractor G & a linear classifier F

Adopt the idea of GAN: Make the features domain-invariant to fool a domain classifier D

Conv Feature
Extractor

Linear
Classifier

Conv Feature
Extractor

𝑿𝑺

𝑿𝑻

𝑮(𝑿𝑺)

𝑮(𝑿𝑻)

Domain
Classifier

𝑫(𝑮 𝑿𝑺)

𝑫(𝑮 𝑿𝑻)

Feature
Distribution

𝑿𝑺 𝑮(𝑿𝑺) 𝑭(𝑮 𝑿𝑺)

What about 𝑿𝑻?

MSTN: The predecessor of GCAN

Adversarial training alone is not enough
• It can map target features near source features
• But class discriminability is not guaranteed

Per-class alignment loss

Φ: distance function
𝐶𝑘: the centroid of features from class 𝑘

MSTN: http://proceedings.mlr.press/v80/xie18c/xie18c.pdf

http://proceedings.mlr.press/v80/xie18c/xie18c.pdf

GCAN Architecture & Loss Functions

1. ℒ𝐶 = 𝔼 𝑥,𝑦 ~𝐷𝑆[𝑐𝑟𝑜𝑠𝑠_𝑒𝑛𝑡𝑟𝑜𝑝𝑦 𝐹(𝐺 𝑥), 𝑦]

2. ℒ𝐷𝐴 = 𝔼𝑥∈𝐷𝑆[log(1 − 𝐷(𝐺 𝑥)] + 𝔼𝑥∈𝐷𝑇[log(𝐷(𝐺 𝑥)]

3. ℒ𝐶𝐴 = σ𝑘=1
𝐾 𝜙(𝐶𝑆

𝑘 , 𝐶𝑇
𝑘)

4. ℒ𝑆𝐴 = max(𝑋𝑆𝐶𝑎 − 𝑋𝑆𝐶𝑝
2
− 𝑋𝑆𝐶𝑎 − 𝑋𝑆𝐶𝑛

2
+𝑚, 0)

Linear combination to get the total loss
ℒ𝑡𝑜𝑡𝑎𝑙 = ℒ𝐶 + 𝜆ℒ𝐷𝐴 + 𝛾ℒ𝐶𝐴 + 𝜂ℒ𝑆𝐴

Adopting GCN

ℒ𝑆𝐴 = max(𝑋𝑆𝐶𝑎 − 𝑋𝑆𝐶𝑝
2
− 𝑋𝑆𝐶𝑎 − 𝑋𝑆𝐶𝑛

2
+𝑚, 0) => TripletLoss on GCN features

𝑋 = 𝐺(𝑋𝑏𝑎𝑡𝑐ℎ)

𝑋𝑆𝐶 = ෡𝐷−
1

2 መ𝐴෡𝐷−
1

2𝑋𝑇𝑊 (<=Simplified ChebNet)
መ𝐴 = 𝐴 + 𝐼 = 𝑋𝑋𝑇

෡𝐷𝑖𝑖 =෍
𝑗

መ𝐴𝑖𝑗

• As addressed in the lecture, GCN features are aware of instance relation
• Then, ℒ𝑆𝐴 aligns the data structure in feature space

CNN vs GCN

TripletLoss: https://arxiv.org/pdf/1412.6622.pdf

https://arxiv.org/pdf/1412.6622.pdf

Experimental Settings

Base CNN: AlexNet

Dimension of features: 256

Domain classifier: 256 (𝑓𝑒𝑎𝑡) → 1,024 → 1,024 → 1

GCN: a single-layer Simplified ChebNet (256 (𝑓𝑒𝑎𝑡) → 150)

Datasets used

Name # of Classes # of Domains # of Images

ImageCLEF-DA 12 3 ~1.8k

Office-31 31 3 ~4k

Office Home 65 4 ~30k

Experimental Results

Implementation Details

Based on MSTN implementation https://github.com/wgchang/DSBN

Since the pre-trained AlexNet model as modified in GCAN paper was not available in PyTorch,
all experiments are done with pre-trained ResNet18 (largest model that can run in a single TitanX
Pascal GPU)

Using SGD as in GCAN paper w/ lr=1e-2 always leads to divergence => Adam w/ lr=1e-5 is used

When the concatenated features (CNN + GCN) are fed to both classifier F & domain classifier D,
the cross-entropy loss and the centroid alignment loss are too large initially (> 30,000)
 leads to degenerate solution even after loss convergence
 therefore, the concatenated features are fed to D, and the CNN features are fed to F

Many details (GCN initialization, warmup learning rate, data augmentation, etc.) were missing in
GCAN paper
 followed the hyperparameter settings of the MSTN repository

https://github.com/wgchang/DSBN

Reproduced Results

Office-31, ResNet-18, classification accuracy (%)

A->D, A->W, D->A experiments are still running (only ~21% of total iteration)
=> will be updated in the results.docx file in the link after the training is finished

Method A->D A->W D->A D->W W->A W->D Avg

MSTN 81.93 81.76 65.53 97.99 59.89 99.80 81.15

GCAN 74.30 74.09 56.48 97.48 58.54 100.0 76.82

How to Run the Codes

1. The codes can be downloaded here
2. Download Office-31 dataset from here
3. PyTorch >= 1.3, python=3.6, h5py, opencv (refer to https://github.com/wgchang/DSBN)
4. Modify ‘OFFICE_DIR’ variable in dataset/factory.py to your own office31 top folder
5. Run the following command

python trainval_multi.py --model-name resnet18 --exp-setting office --in-features 256 --sa-loss --
sm-loss --adv-loss --source-datasets webcam --target-datasets amazon --batch-size 40 --save-dir
output/office_wa --print-console --gpu 0

This command runs GCAN on W(ebcam)->A(mazon) scenario on gpu0
Choose --source-datasets & --target-datasets among [‘amazon’, ‘dslr’, ‘webcam’]
About 9GB of VRAM is required

Currently, only ResNet18 on Office31 is supported

https://drive.google.com/file/d/1knfE8v-vxSWIPCrlzHEmXiQKTviTfuL9/view?usp=sharing
https://drive.google.com/open?id=0B4IapRTv9pJ1WGZVd1VDMmhwdlE
https://github.com/wgchang/DSBN

Thank you!

