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Recommendation & Matrix Completion
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Geometric Matrix Completion
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Error on labeled data

Multi-Graph Convolution
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Multi-Graph Convolutional Neural Network (MGCNN)
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1-Dimensional 2-Dimensional

Graph Laplacian

∆= ΦΛΦT

Λ = diag λ1, ⋯ , λn
Φ ∶ eigenvector matrix

∆c= ΦcΛcΦc
T,

∆r= ΦrΛrΦr
T

Fourier Transform ෡X = ΦTX ෡X = Φr
TXΦc

Convolution Operation
X ∗ Y = Φ ΦTX ∘ ΦTY

= Φ ෡X ∘ ෡Y
X ∗ Y = Φr

෡X ∘ ෡Y Φc
T

Chebychev Polynomial 

Filter
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Graph CNN
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෍
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𝑙′, 𝑙 : input / output channel

𝜉 : nonlinearity function
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Recurrent MGCNN (RMGCNN)
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Matrix Diffusion : Make small changes for each step

𝑛 movies

𝑚 users

Loss :
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Complexity : 𝑂 𝑚𝑛
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Separable RMGCNN (sRMGCNN)
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Loss :
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Total Learning Complexity : 𝑂(𝑛 + 𝑚)
Matrix Factorization

𝑋 = 𝑊𝐻𝑇 ∶ 𝑛 × 𝑚
𝑊 ∶ 𝑛 × 𝑟,  𝐻 ∶ 𝑚 × 𝑟 𝑟 ≪ 𝑛,𝑚

𝑂(𝑟𝑚)

𝑂(𝑟𝑛)
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Experimental Results
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Evolution of matrix 𝑋(𝑡)

RMS error : 

RMGCNN

sRMGCNN
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Experimental Results

MovieLens dataset

Other dataset
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Reproduction

Code is based on the authors’ implementation (https://github.com/fmonti/mgcnn/),
and modified for running it on Python3.6 & trying simplified Chebyshev filter.

Modified Code : https://github.com/mini-hong/sRMGCNN

Tested Environment :
- Python 3.6
- Tensorflow 1.13.1
- Other Requirements : joblib, h5py, scipy, matplotlib

https://github.com/fmonti/mgcnn/
https://github.com/mini-hong/sRMGCNN


J. Y. Choi. SNU

Code explanation

Matrix of the given data & user/item graph weights
are loaded from dataset

Construct graph Laplacians of user/item graph
from the loaded data

Apply SVD and do matrix factorization
by selecting top 10 rank of the original matrix
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Code explanation

Define network parameters and initial matrix
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Code explanation
Define multi-graph convolution network

Define LSTM network for matrix diffusion

Reconstruct matrix at each step of matrix diffusion
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Code explanation

Define the loss function and train the network parameters
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Reproduction results

Dataset RMSE (paper) RMSE (reproduction)

MovieLens 0.929 0.9331

Flixter 0.9258 0.9326

Douban 0.8012 0.7929

YahooMusic 22.4149 21.9876

For the all of datasets, the performance of the sRMGCNN was well reproduced.
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Additional experiments

Performance of sRMGCNN changes as the rank of matrix factorization changes (Tested in MovieLens dataset).
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Matrix Factorization Rank RMSE

3 0.9759

5 0.9614

7 0.9466

10 (paper) 0.9331

12 0.9384

15 0.9725

The rank of 10 (which is used for experiments reported in the paper), shows the best performance.
The ranks larger than 10 may need to be trained for more training iterations.
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Additional experiments

Performance of sRMGCNN using Chebyshev polynomial (order=5) and using Simplified ShevNet
(Tested in MovieLens dataset).

Graph Filter RMSE Training Time (s)

ChebNet (order=5) 0.9331 0.0363

Simplified ChebNet 1.019 0.0250

Code :

Using ShevNet shows faster training time, however it greatly degrades the performance (RMSE)
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Conclusion
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• Generalize a graph convolutional network into 
a multi-graph convolutional network

• Handle the matrix completion problem with 
multi-graph CNN + matrix diffusion using RNN structure

• Simple & efficient algorithm, 
seems to be practical to apply on various large-scale applications.
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Thank You
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