Homework #1

Due: Oct 05, 23:59

1. Derive an equation that describes the rate of an enzyme reaction (v)under uncompetitive inhibition as a function of v_m , K_M , [S], [I], and K_I' where

 v_M = maximum enzyme reaction rate under no inhibition

- K_M = half-velocity constant under no inhibition
- [S] = substrate concentration
- [*I*] = uncompetitive inhibitor concentration
- $K'_{I} = k_{-4}/k_{4}$, where k_{4} and k_{-4} are forward and backward reaction rate constants for the formation of the enzyme-substrate-inhibitor complex (ESI) from the enzyme-substrate complex (ES) and uncompetitive inhibitor (I), as illustrated in the following.

$$ES \! + \! I \xrightarrow[]{k_4}{\underset{k_{-4}}{\longleftrightarrow}} ESI$$

Use the equation you derived to explain how the maximum enzyme reaction rate and half-velocity constant changes due to the presence of an uncompetitive inhibitor.

(50 points)

2. You want to develop an eco-friendly and cost-effective process for removal of nitrate (NO_3) from groundwater. Your plan is to supply molasses, a byproduct of sugar manufacturing, as an e⁻ donor to enhance denitrification in groundwater. Assuming that the molecular formular of molasses can be represented by $C_{12}H_{22}O_{11}$ (same as that for sugar), answer the following.

- 1) Write the electron donor half reaction, R_d , in an electron-equivalent form. Use HCO_3^- as an only form of an oxidized carbon species. (15 points)
- 2) Write the energy reaction, R_e , in an electron-equivalent form. How much grams of molasses are needed per g of NO₃-N consumed for the energy reaction? (15 points)
- 3) Write the cell formation half reaction, R_c , in an electron-equivalent form. Use the cell formula of $C_5H_7O_2N$ and NO_3^- as a source of nitrogen (not NH_4^+). Also use HCO_3^- as an only form of oxidized carbon species. (15 points)
- 4) Write the overall cell synthesis reaction, R_s , in an electron-equivalent form. Use the R_d derived from 1) and the R_c derived from 3). How much grams of molasses are needed per g of NO₃-N consumed for the cell synthesis reaction? (15 points)
- 5) From the calculations you did for 2) and 4), which growth state do you think is more favorable for efficient use of molasses? (A) a rapidly growing state or (B) a slowly growing state? Briefly describe the reason for your selection. (10 points)
- 6) You are planning to control the molasses supply rate and other environmental conditions relevant to the bacterial growth such that a f_s value of 0.05 is achieved. Write the stoichiometry of the overall reaction occurring at this condition. For 1 g of NO₃-N consumption, i) how much molasses will be consumed (in g molasses), ii) how much alkalinity will be produced (in g as CaCO₃), and iii) how much biomass will be produced (in g biomass)? (30 points)