Homework #1 - SOLUTIONS

Due: Apr 05, 23:59

- 1. Read the following article to provide a brief summary (1-2 paragraphs).
- D. G. J. Larsson and C. -F. Flach, Antibiotic resistance in the environment. Nature Reviews Microbiology, 20, 257-269, 2022.

avaiable at: https://www.nature.com/articles/s41579-021-00649-x

(30 points)

- 2. Follow the instructions below to rewrite half reactions given in the lecture note.
- 1) Sulfide-Sulfate couple (Reaction # I-9): Use bisulfate (HSO₄) as the only oxidized sulfur species and hydrogen sulfide (H₂S) as the only reduced sulfur species [may represent highly acidic conditions].

(15 points)

Solution)

_

$$I-9: \frac{1}{8}SO_4^{2-} + \frac{19}{16}H^+ + e^- = \frac{1}{16}H_2S + \frac{1}{16}HS^- + \frac{1}{2}H_2O$$

+) $\frac{1}{8}HSO_4^- = \frac{1}{8}SO_4^{2-} + \frac{1}{8}H^+$
+) $\frac{1}{16}HS^- + \frac{1}{16}H^+ = \frac{1}{16}H_2S$
 $\frac{1}{8}HSO_4^- + \frac{9}{8}H^+ + e^- = \frac{1}{8}H_2S + \frac{1}{2}H_2O$

2) Carbon dioxide-Glutamate couple (Reaction # O-8): Use bicarbonate (HCO_3^-) as the only oxidized carbon species, free ammonia (NH_3) and ammonium ion (NH_4^+) at a molar ratio of 1:1 as reduced nitrogen species, and the deprotonated form for glutamate [may represent a condition of pH = pK_a of ammonia].

(15 points)

Solution)

- 3. You want to develop an eco-friendly and cost-effective process for removal of nitrate (NO₃⁻) from groundwater. Your plan is to supply molasses, a byproduct of sugar manufacturing, as an e⁻ donor to enhance denitrification in groundwater. Assuming that the molecular formular of molasses can be represented by $C_{12}H_{22}O_{11}$ (same as that for sugar), answer the following.
- 1) Write the electron donor half reaction, R_d , in an electron-equivalent form. Use HCO_3^- as an only form of an oxidized carbon species. (20 points)

Solution)

Step 1: $HCO_3^- = C_{12}H_{22}O_{11}$ Step 2: $HCO_3^- + H_2O + e^- = C_{12}H_{22}O_{11}$ Step 3: $12HCO_3^- + H_2O + e^- = C_{12}H_{22}O_{11}$ Step 4: $12HCO_3^- + e^- = C_{12}H_{22}O_{11} + 25H_2O$ Step 5: $12HCO_3^- + 60H^+ + e^- = C_{12}H_{22}O_{11} + 25H_2O$

Step 6:
$$12HCO_3^- + 60H^+ + 48e^- = C_{12}H_{22}O_{11} + 25H_2O$$

Step 7: $\frac{1}{4}HCO_3^- + \frac{5}{4}H^+ + e^- = \frac{1}{48}C_{12}H_{22}O_{11} + \frac{25}{48}H_2O$

2) Write the energy reaction, R_e , in an electron-equivalent form. How much grams of molasses are needed per g of NO3-N consumed for the energy reaction? (20 points)

$$R_{a} (I-7): \frac{1}{5}NO_{3}^{-} + \frac{6}{5}H^{+} + e^{-} = \frac{1}{10}N_{2} + \frac{3}{5}H_{2}O$$

- $R_{d}: \frac{1}{48}C_{12}H_{22}O_{11} + \frac{25}{48}H_{2}O = \frac{1}{4}HCO_{3}^{-} + \frac{5}{4}H^{+} + e^{-}$
- $R_{e}: \frac{1}{48}C_{12}H_{22}O_{11} + \frac{1}{5}NO_{3}^{-} = \frac{1}{10}N_{2} + \frac{1}{4}HCO_{3}^{-} + \frac{1}{20}H^{+} + \frac{19}{240}H_{2}O$

Molasses molecular weight: $12 \times 12 + 1 \times 22 + 16 \times 11 = 342$

$$g \text{ molasses needed/g NO}_{3}\text{-}N \text{ consumed } = \frac{\frac{1}{48} \text{ mole} \times 342 \text{ g molasses/mole}}{\frac{1}{5} \text{ mole} \times 14 \text{ g NO}_{3} - N/\text{mole}} = 2.54$$

3) Write the cell formation half reaction, R_c , in an electron-equivalent form. Use the cell formula of $C_5H_7O_2N$ and NO_3^- as a source of nitrogen (not NH_4^+). Also use HCO_3^- as an only form of oxidized carbon species. (20 points)

Solution)

Step 1:
$$HCO_3^- = C_5H_7O_2N$$

Step 2: $HCO_3^- + NO_3^- + H_2O + e^- = C_5H_7O_2N$
Step 3: $5HCO_3^- + NO_3^- + H_2O + e^- = C_5H_7O_2N$
Step 4: $5HCO_3^- + NO_3^- + e^- = C_5H_7O_2N + 16H_2O$
Step 5: $5HCO_3^- + NO_3^- + 34H^+ + e^- = C_5H_7O_2N + 16H_2O$
Step 6: $5HCO_3^- + NO_3^- + 34H^+ + 28e^- = C_5H_7O_2N + 16H_2O$
Step 7: $\frac{5}{28}HCO_3^- + \frac{1}{28}NO_3^- + \frac{17}{14}H^+ + e^- = \frac{1}{28}C_5H_7O_2N + \frac{4}{7}H_2O$

4) Write the overall cell synthesis reaction, R_s , in an electron-equivalent form. Use the R_d derived from 1) and the R_c derived from 3). How much grams of molasses are needed per g of NO₃-N consumed for the cell synthesis reaction? (20 points)

Solution)

$$R_{c}: \frac{5}{28}HCO_{3}^{-} + \frac{1}{28}NO_{3}^{-} + \frac{17}{14}H^{+} + e^{-} = \frac{1}{28}C_{5}H_{7}O_{2}N + \frac{4}{7}H_{2}O$$

- $R_{d}: \frac{1}{48}C_{12}H_{22}O_{11} + \frac{25}{48}H_{2}O = \frac{1}{4}HCO_{3}^{-} + \frac{5}{4}H^{+} + e^{-}$
- $R_{s}: \frac{1}{48}C_{12}H_{22}O_{11} + \frac{1}{28}NO_{3}^{-} = \frac{1}{28}C_{5}H_{7}O_{2}N + \frac{1}{14}HCO_{3}^{-} + \frac{1}{28}H^{+} + \frac{17}{336}H_{2}O$

$$g \text{ molasses needed/g NO}_3-N \text{ consumed } = \frac{\frac{1}{48} \text{ mole} \times 342 \text{ g molasses/mole}}{\frac{1}{28} \text{ mole} \times 14 \text{ g NO}_3 - N/\text{mole}} = 14.25$$

5) From the calculations you did for 2) and 4), which growth state do you think is more favorable for efficient use of molasses? (A) a rapidly growing state or (B) a slowly growing state? Briefly describe the reason for your selection. (10 points)

Solution)

<u>(B)</u>

At a slowly growing state, the f_e value is greater, meaning that the overall stoichiometry is more weighted to R_e than it is for a slowly growing state. Therefore, at a slowly growing state the amount of molasses needed to remove a gram of NO₃-N will be greater (more efficient use of molasses).