Homework #2

due: October 16, in class

* Answer the following questions. Be sure to clearly show the procedures to solve the problems.

- 1. You want to develop an eco-friendly and cost-effective process for removal of nitrate (NO_3^-) from groundwater. Your plan is to supply molasses, a byproduct of sugar manufacturing, as an e⁻ donor to enhance denitrification in groundwater. Assuming that the molecular formular of molasses can be represented by $C_{12}H_{22}O_{11}$ (same as that for sugar), answer the following.
- 1) Write the electron donor half reaction, R_d , in an electron-equivalent form. Use HCO_3^- as an only form of an oxidized carbon species. (20 points)
- 2) Write the energy reaction, R_e , in an electron-equivalent form. How much grams of molasses are needed per g of NO_3 -N consumed for the energy reaction? (20 points)
- 3) Write the cell formation half reaction, R_c , in an electron-equivalent form. Use the cell formula of $C_5H_7O_2N$ and NO_3^- as a source of nitrogen (not NH_4^+). Also use HCO_3^- as an only form of an oxidized carbon species. (20 points)
- 4) Write the overall cell synthesis reaction, R_s , in an electron-equivalent form. Use the R_d derived from 1) and the R_c derived from 3). How much grams of molasses are needed per g of NO_3 -N consumed for the cell synthesis reaction? (20 points)
- 5) From the calculations you did for 2) and 4), which growth state do you think is more favorable for efficient use of molasses? (A) a rapidly growing state or (B) a slowly growing state? Briefly describe the reason for your selection. (10 points)

- 6) You are planning to control the molasses supply rate and other environmental conditions relevant to the bacterial growth such that a f_s value of 0.05 is achieved. Write the stoichiometry of the overall reaction occurring at this condition. For 1 g of NO₃-N consumption, i) how much molasses will be consumed (in g molasses), ii) how much alkalinity will be produced (in g as CaCO₃), and iii) how much biomass will be produced (in g biomass)? (30 points)
- 2. At the following conditions, at what O_2 partial pressure will an energy reaction using ferric ion (Fe³⁺) as an e⁻ acceptor be more thermodynamically favorable than an energy reaction using O_2 as an e⁻ acceptor? From your results, briefly discuss about the condition where ferric ion reduction will be favorable.

$$pH=8.0 \qquad T=20^{o}C$$

$$[Fe^{2+}]=8.0\times10^{-4}\,M \quad \text{(dissolved at the solubility limit of Fe(OH)}_2 \text{ at pH=8.0)}$$

$$[Fe^{3+}]=4.0\times10^{-20}\,M \quad \text{(dissolved at the solubility limit of Fe(OH)}_3 \text{ at pH=8.0)}$$
 (40 points)