1.

(41)

$$
I_{D_{1}}=\frac{1}{2} t_{n} C_{0}\left(\frac{w}{L}\right)\left(V_{i n} 2-V_{i n 1}-V_{T H}\right)^{2}
$$

(1) The current is not an odd function of ($\left.V_{\text {in 2 }}-V_{\text {in }}\right)$. Therefore it is not symmetric around $\quad v_{\text {in }}=v_{\text {in 2 }}\left[\left(V_{i_{1}}-v_{\text {in }}\right)=0\right]$.
(2) The input impedance seen at $V_{i n}$ and $V_{\text {in z }}$ are different
(3) The circuit carnot suppress the supply noise. because there is no differential output available.
10.32

$$
\left(V_{i n}-V_{i n 2}\right)^{2}=\frac{2}{\mu_{n} \operatorname{cox} \frac{W}{L}}\left(I_{s s}-2 \sqrt{I_{D_{1}} I_{D_{2}}}\right)
$$

(a)

$$
\begin{aligned}
& I_{D_{1}}=0 \Rightarrow \\
& \quad\left(V_{n_{1}}-V_{i n_{2}}\right)^{2}=\frac{2 I_{S s}}{\mu_{n} \omega_{x} \frac{W}{L}} \rightarrow V_{i n_{1}-} V_{i n_{2}}=-\sqrt{\frac{2 I_{s s}}{\mu_{n} \operatorname{Cox} \frac{w}{L}}}
\end{aligned}
$$

This is the minimum differential input voltage to turn M_{1} off.
(b) $I_{D_{1}}=\frac{I_{55}}{2} \Rightarrow I_{D_{2}}=\frac{I_{35}}{2}$

$$
\left(V_{\text {in }}-V_{\text {in 2 }}\right)^{2}=\frac{2}{r_{n} \operatorname{cox} \frac{\mathrm{w}}{L}}\left(I_{s s}-I_{s s}\right)=0 \rightarrow V_{i n_{1}}-V_{i_{n_{2}}}=0
$$

This is the equilibrium input case.
(c) $I_{D_{1}}=I S s \rightarrow I_{D_{2}}=0$

$$
\left(V_{i_{1}}-V_{\text {in 2 }}\right)^{2}=\frac{2 I_{s s}}{\mu_{n} \cos \frac{W}{L}} \rightarrow V_{i n_{1}-}-V_{i n 22}+\sqrt{\frac{2 I_{s s}}{\mu_{n} \cos \frac{W}{L}}}
$$

This is the minimum input differential voltage to turn M_{2} off.

$$
\begin{aligned}
& v_{\text {out }, \mathrm{CM}}=-g_{m_{1}} v_{M_{1}} R_{c}=-g_{m_{1}} R_{c} \frac{\frac{1}{g_{m 1}}}{\frac{1}{g_{m_{1}}}+2 R_{E E}} v_{\text {in }, \mathrm{CM}} \\
& \Rightarrow \frac{v_{\text {out }, \mathrm{cM}}}{\nu_{\text {in }}, \mathrm{CM}}=-\frac{g_{m_{1}} R_{c}}{1+2 R_{E E} g_{m_{1}}}=-\frac{\frac{R_{c}}{2}}{R_{E E}+\frac{1}{2 g_{m_{1}}}}
\end{aligned}
$$

10.57
(a)

57 (a)

$$
R_{P}=R_{D} \|\left(R_{D}+6 R_{D}\right)
$$

$$
R_{N}=2 g_{n}, \frac{r_{01}}{2} r_{0 g}+\frac{r_{01}}{2}+r_{09} \approx g_{n 1} r_{01} r_{03}
$$

$$
R_{\text {out }}=R_{p} \| R_{N}
$$

GM TakE: $\operatorname{Vin,cM_{1}}$

$$
A_{C_{4}}=-G_{m} R_{\text {out }}
$$

iii) $A_{C M_{1}-D_{M}} 7 x[15$

$$
A_{C M-D M}=\frac{\Delta U_{\text {out }}}{\Delta V_{C M}}
$$

$$
\begin{aligned}
\Delta V_{C M} & =\Delta V_{G S}+2 \Delta I_{D} r_{03} \\
& =\Delta I_{D}\left(\frac{1}{g_{m 1}}+2 r_{03}\right)
\end{aligned}
$$

$$
\Delta V_{\text {out }}=\Delta V_{\text {out } 1}-\Delta V_{\text {out } 2}=-\Delta R_{D} \Delta I_{D}
$$

$$
A_{C M-D_{M}}=-\frac{\Delta R_{0}}{\frac{1}{g_{m_{1}}}+2 r_{03}}
$$

$$
C M R R=\frac{A_{D M}}{A_{C M-D M}}=\frac{g_{m_{1}} R_{D}}{\frac{\Delta R_{D}}{\frac{1}{g_{H 1}}+2 r_{13}}=\left(1+2 g_{n_{1}} r_{03}\right) \frac{R_{D}}{\Delta R_{D}}}
$$

$$
\begin{aligned}
& G_{M}=\frac{i_{0}}{U_{\text {in }, \mathrm{CM}}}=\frac{2 g_{A, U_{g S}}}{U_{\text {Sn }, \mathrm{cm}}} \\
& =\frac{2 g_{m_{1}}}{V_{\text {in }, M}} \frac{\frac{1}{2 g_{m+1}}}{\frac{1}{2 g_{m_{1}}}+r_{03}} V_{\text {in, } C M} \approx \frac{1}{r_{03}}
\end{aligned}
$$

(b)

$$
R_{P}=R_{0} \|\left(R_{0}+\Delta R_{D}\right)
$$

$$
R_{N}=\frac{r_{01}}{2}+R_{t}+2 g_{m_{1}} \frac{r_{01}}{2} R_{t} \simeq g_{m_{1} 1} r_{01} R_{t} \approx g_{n_{1}} r_{01} g_{43} r_{03} r_{04}
$$

$$
R_{\text {out }}=R_{p}\left\|R_{N}=R_{0}\right\|\left(R_{P}+\Delta R_{P}\right) \|\left(g_{R_{1}}, r_{0,} g_{N_{3}} r_{03} r_{04}\right)
$$

$=\frac{2 g_{L_{1}}}{U_{\text {Th }, c_{4}}} \frac{\frac{1}{2 g_{\lambda_{1}}}}{\frac{1}{2 g_{-1}}+R_{t}} U_{i_{n_{n}}, c_{m}} \approx \frac{1}{R_{-}}$

$$
A_{c M}=-G_{\text {mum }} \text { Kout }=-\frac{R_{\text {out }}}{R_{t}}
$$

iii) $\quad A_{C M-D M}=-\frac{\Delta K_{D}}{\frac{1}{g_{i 1}}+2\left[g_{M_{3}} r_{03} r_{04}+r_{08}+r_{04}\right]}$

10.60

$$
\begin{aligned}
& 68 . \\
& \text { Vine } \\
& A_{r}=100 \\
& \rho=1 n \mathrm{~N} \\
& V_{A, n}=10 \mathrm{~V}, V_{A, P}=5 \mathrm{~V}, V_{C C}=2.5 \mathrm{~V}, R_{1}=R_{2} \\
& \text { (Half Circuit) } \\
& V_{\text {in }}^{2}-a_{2}^{2} \\
& A_{v}=-g_{m_{1}}\left(R_{1}\left\|r_{01}\right\| r_{O_{3}}\right) \\
& g_{n_{1}}=\frac{I_{E E}}{2 V_{T}}, r_{01}=\frac{2 V_{A, n}}{I_{E E}}, r_{03}=\frac{2 V_{4, p}}{I_{E E}} \\
& 100=\frac{1}{2 V_{T}}[\left(R, \tau_{E E}\right)\|(\underbrace{2 V_{A, n}}_{20})\|(\underbrace{\left.2 V_{A, P}\right)}_{10})] \\
& \frac{6.67 R_{1} T_{\text {Er }}}{R_{1} T_{E E}+6.67}=200 \times 26 \mathrm{~m}=5.2 \\
& 6.67 \mathrm{k}, \text { Tex }=5.2 k_{1} L_{a c}+5.2 \times 6.67 \\
& 1.4 \Omega R, T E E=5.2 \times 6.67, R_{1} T E=2.359 \times 10 \\
& P=1 \mathrm{~mW}=I_{E E} V_{c c} \Rightarrow I_{E E}=\frac{10^{-3}}{2.5}=0.4 \mathrm{~mA} \\
& \Rightarrow R_{1}=\frac{23.59}{I_{E E}}=58.98 \mathrm{k} \Omega
\end{aligned}
$$

$$
\begin{aligned}
& \text { no }
\end{aligned}
$$

$$
\begin{aligned}
& =-\frac{2}{\left(V_{G S 1}-V_{T H}\right)_{\text {equil }}}\left(\frac{1}{\lambda_{n}} \| \frac{1}{\lambda_{r}}\right) \\
& =\frac{2}{\left(V_{G_{S}}-V_{T h}\right)_{\text {eqGil }}}(10115)=40 \Rightarrow\left(V_{G_{S}}-V_{\text {TT }}\right)_{\text {equil }}=166.67 \mathrm{mV} \\
& P=2 \times 10^{-3}=V_{D D} I_{S S} \Rightarrow I_{S S}=\frac{2 \times 10^{-3}}{1.8}=1.11 \mathrm{r} \mathrm{~A} \\
& \left(\frac{\mathrm{~K}}{L^{2}}\right)_{1,2}=\frac{I_{s s}}{\mu_{H} \sigma_{0 x}\left(V_{G S_{1}}-V_{T H}\right)_{e q_{G i 1}^{2}}^{2}}=\frac{1.11 \times 10^{-3}}{\left.10^{-4} \times 0.1666\right)^{2}}=400 \\
& \left(\frac{\mathrm{~K}}{\mathrm{~L}}\right)_{3,4}=\frac{I_{S S}}{\mu_{P} G_{X}\left(V_{G S}-V_{\operatorname{Van}}\right)_{\text {eg }}^{2}}=\frac{1.11 \times 10^{-3}}{\left.10^{-4} \times 01666\right)^{2}}=400 \\
& \left(\frac{\mathrm{~N}}{\mathrm{~L}}\right)_{S}=\frac{2 I_{S S}}{\mu_{m} C_{0 \times}\left(V_{G S}-V_{\text {Tin }}\right)_{\text {GGi }}}=\frac{2 \times 1.11 \times 10^{-3}}{\left.10^{-4} \times 0.1666\right)^{2}}=800
\end{aligned}
$$

2.

(a) $V_{\text {en 1 }}=V_{\text {in } 2} \Rightarrow V_{\text {offset }}=\Delta R \times \frac{1}{2} I_{\text {ss }}$.
(b)

$$
\begin{aligned}
V_{i n 1}=V_{i n 2} \quad \Delta I_{D} & =\frac{1}{2} \mu_{n} C_{0 x} \Delta\left(\frac{w}{L}\right)\left(V_{i n}-V_{S S}-V_{+n}\right)^{2} \\
I_{S S} & =2 \times \frac{1}{2} \mu_{n} C_{0 x}\left(\frac{w}{L}\right)\left(V_{m}-V_{S S}-V+h\right)^{2} \\
\Rightarrow \quad \Delta I_{D} & =I_{S S} \times \frac{\Delta\left(\frac{w}{L}\right)}{2\left(\frac{w}{L}\right)} \\
\therefore V_{\text {offset }} & =R \cdot \Delta I_{D}=R I_{S S} \cdot \frac{\Delta\left(\frac{w}{L}\right)}{2\left(\frac{w}{L}\right)}
\end{aligned}
$$

(C). $\Delta\left(\frac{w}{L}\right) \neq 0, \Delta R \neq 0$.
when $V_{i_{1}}=V_{i n_{2}}$,

$$
\begin{aligned}
V_{\text {out } 1}-V_{\text {out } 2} & =\Delta R \cdot \frac{1}{2} I_{s s}+R \cdot \Delta I_{D} \cdot \quad\left(1 \bar{z}+Z_{c r}\right) . \\
& =\Delta R \cdot \frac{1}{2} I_{s s}+R \cdot \frac{1}{2} I_{s s} \cdot \frac{\Delta(\omega / L)}{(\omega / L)} \\
& =\frac{1}{2} I_{s s}\left(\Delta R+R \cdot \frac{\Delta(\omega / L)}{(\omega / L)}\right. \\
V_{\text {in }, \text { offset }} & =\frac{V_{\text {out, offset }}}{A v} \\
& =\frac{1}{2} I_{s s} / g_{m} \cdot\left[\frac{\Delta R}{R}+\frac{\Delta(\omega / L)}{\left(\frac{\omega}{L}\right)}\right]
\end{aligned}
$$

