Homework #3

Due: Oct 27, 23:59

Instructor: Yongju Choi

* Answer the following questions. Be sure to clearly show the procedures to solve the problems.

A chemostat having $V = 2,000 \text{ m}^3$ receives a flow rate of $Q = 1,000 \text{ m}^3/d$ of wastewater containing $S^0 = 500 \text{ mg } BOD_L/L$. Also included in the wastewater is the inert biomass $X_i^0 = 50 \text{ mg } VSS/L$. The following parameters are found for aerobic biodegradation:

- 1. Calculate S_{\min} , θ_x^{\min} and θ_x of the chemostat. (10 points)
- 2. Calculate effluent VSS, COD and BOD_L. (30 points)
- 3. Calculate the effluent N and P concentrations when influent concentrations are 50 mg NH_4 -N/L and 10 mg PO_4 -P/L, respectively. (20 points)
- 4. Calculate the amount of O_2 that should be supplied to the reactor when influent and effluent DO are 6 and 2 mg/L, respectively. (20 points)
- 5. Assuming that the influent also contains biodegradable particulate organic matter with a concentration of 100 mg COD/L and the

hydrolysis rate coefficient is k_{hyd} = 0.2/d, recalculate the effluent VSS, COD, and BOD_L. (30 points)

Hints:

- Consider active and inert biomass, <u>and particulate organic matter</u> supplied from the influent (if there is any) as components of VSS. $(X_v = X_a + X_i + S_p; in mg VSS/L)$
 - (for COD \rightarrow VSS conversion of S_p , assume S_p has the chemical formula as that for biomass)
- Effluent COD should include COD of the substrate, SMP, and VSS (eff. COD = substrate COD + SMP COD + VSS COD)
 - · Conversion needed for VSS: recall 1.42 g COD/g VSS for biomass $(C_5H_7O_2N)$
- BOD_L stands for "ultimate BOD", the oxygen demand for all biodegradable organic matter
 - \cdot S^0 is given as "BOD $_L/L$ ", so substrate is assumed to be fully biodegradable
 - · SMP is fully biodegradable
 - · active biomass is partially biodegradable (biodegradable fraction = f_d)
 - · inert biomass is non-biodegradable

So: eff. BOD_L

= substrate BOD_L (=COD) + SMP BOD_L (=COD) + f_d × active biomass COD