Homework #3

Due: May 01, 23:59

* Answer the following questions. Make sure to clearly show the procedures to solve the problems.

A chemostat having V = 2,000 m³ receives a flow rate of Q = 1,000 m³/d of wastewater containing S⁰ = 500 mg BOD_L/L. Also included in the wastewater is the inert biomass X_i^0 = 50 mg VSS/L. The following parameters are found for aerobic biodegradation:

$$\begin{split} \hat{q} &= 20 \; g \; BOD_L / g \; VSS_a - d & k_2 &= 0.09 \; g \; COD_p / g \; VSS_a - d \\ Y &= 0.42 \; g \; VSS_a / g \; BOD_L & \hat{q}_{UAP} &= 1.8 \; g \; COD_p / g \; VSS_a - d \\ K &= 20 \; mg \; BOD_L / L & K_{UAP} &= 100 \; mg \; COD_p / L \\ b &= 0.15 / d & \hat{q}_{BAP} &= 0.1 \; g \; COD_p / g \; VSS_a - d \\ f_d &= 0.8 & K_{BAP} &= 85 \; mg \; COD_p / L \\ k_1 &= 0.12 \; g \; COD_p / g \; BOD_L \end{split}$$

- 1. Calculate S_{\min} , θ_x^{\min} and θ_x of the chemostat. (10 points)
- 2. Calculate effluent VSS, COD and BOD_L. (30 points)
- 3. Calculate the effluent N and P concentrations when influent concentrations are 50 mg NH_4 -N/L and 10 mg PO_4 -P/L, respectively. (20 points)
- 4. Calculate the amount of O_2 that should be supplied to the reactor when influent and effluent DO are 6 and 2 mg/L, respectively. (20 points)
- 5. Assuming that the influent also contains biodegradable particulate organic matter with a concentration of 100 mg COD/L and the

hydrolysis rate coefficient is $k_{hvd} = 0.2/d$, recalculate the effluent VSS, COD, and BOD_L. (30 points)

Hints:

- Consider active and inert biomass, and particulate organic matter supplied from the influent (if there is any) as components of VSS. $(X_v = X_a + X_i + S_p; in mg VSS/L)$ (for COD \rightarrow VSS conversion of S_p , assume S_p has the chemical formula as that for biomass)
- Effluent COD should include COD of the substrate, SMP, and VSS (eff. COD = substrate COD + SMP COD + VSS COD)
 - · Conversion needed for VSS: recall 1.42 g COD/g VSS for biomass $(C_5H_7O_2N)$
- BOD_L stands for "ultimate BOD", the oxygen demand for all biodegradable organic matter
 - \cdot S^0 is given as "BOD_L/L", so substrate is assumed to be fully biodegradable
 - · SMP is fully biodegradable
 - · active biomass is partially biodegradable (biodegradable fraction = f_d)
 - · inert biomass is non-biodegradable
 - So: eff. BODL
 - = substrate BOD_L (=COD) + SMP BOD_L (=COD) + f_d × active biomass COD