Homework #3 - SOLUTIONS

Construct an Excel spreadsheet to predict the substrate and biomass concentration for a batch-type bioreactor by the numerical method.

- 1) What are the substrate and biomass concentrations after 0.1 d calculated by setting the following values as Δt ?
 - i. $\Delta t = 0.0001 d$; ii. $\Delta t = 0.001 d$; iii. $\Delta t = 0.05 d$
- 2) Compare the results for the numerical solution with different Δt values. In your opinion, which will be more accurate? Why? For Δt = 0.05 d, obtain the solutions for substrate and biomass concentrations at 0.5 d. What do you get?

Use the following parameters:

$$S^0 = 500 \ mg \ COD/L$$
 $X_a^0 = 100 \ mg \ VSS/L$ $\hat{q} = 20 \ g \ VSS/g \ COD-d$ $K = 100 \ mg \ COD/L$ $Y = 0.4 \ g \ VSS/g \ COD$ $b = 0.1/d$

Submit not only your answers but also the Excel spreadsheet you worked on. Grading will be given based on the methodology you used and logics of your answers.

(100 points)

Solution)

Following is an example spreadsheet (the structure and the extent of embedded calculations are up to the decision of each student)

A	Α	В	С	D	E	F	G	Н
1	Input para	meters				Time (d)	S	Xa
2	S ⁰	500	mg COD/L			0.000	500	100
3	X _a ⁰	100	mg VSS/L			0.001	498.3	100.7
4	q	20	g VSS/g COD-d			0.002	496.7	101.3
5	K		mg COD/L			0.003	495.0	102.0
6	Y		g VSS/g CC	DD		0.004	493.3	102.7
7	ь		1/d			0.005	491.6	103.3
8	Δt	0.001				0.006	489.8	104.0
9	t	0.1	~		=	0.007	488.1	104.7
10	•	0.1			7	0.008	486.4	105.4
11	Solution					0.009	484.6	105.4
12	S	270 3	mg COD/L			0.010	482.9	106.7
13	X _a		mg VSS/L			0.011	481.1	107.4
14	214	100.9	ing voor			0.012	479.3	108.1
15						0.012	477.5	108.8
16						0.013	475.7	109.6
17						0.015	473.9	110.3
18						0.016	472.1	111.0
19						0.017	470.3	111.7
20						0.018	468.4	112.4
21						0.019	466.6	113.2
22						0.020	464.7	113.9
23						0.021	462.8	114.6
24						0.022	461.0	115.4
25						0.023	459.1	116.1
26						0.024	457.2	116.9
27						0.025	455.2	117.6
28						0.026	453.3	118.4
29						0.027	451.4	119.2
30						0.028	449.4	119.9
31						0.029	447.5	120.7
32						0.030	445.5	121.5
33						0.031	443.5	122.3
34						0.032	441.5	123.0
35 36	-					0.033	439.5 437.5	123.8 124.6

Instructor: Yongju Choi

Results for 0.1 d:

 Δt = 0.0001 d: S = 278.7 mg COD/L, X_a = 187.1 mg VSS/L

 Δt = 0.001 d: S = 279.3 mg COD/L, X_a = 186.9 mg VSS/L

 Δt = 0.05 d: S = 309.5 mg COD/L, X_a = 175.0 mg VSS/L

Results for 0.5 d using Δt = 0.05 d:

S = -26.8 mg COD/L, Xa = 299.0 mg VSS/L

(negative S value indicates that the numerical approximation failed)

The smaller the Δt , the higher the accuracy of numerical approximation. This is due to the nature of numerical approximation – the derivatives (Δt \rightarrow 0) are replaced with algebraic calculations (nonzero Δt). Therefore as Δt gets longer the calculation error will get larger. If Δt exceeds a certain value for an explicit method, the calculation error will be magnified with the progress of calculation such that we may get a stable solution as we see from Δt =0.05 d in this case.