Homework #4 - Solutions

Due: June 02 (Tue) 23:59

1. Derive the overall mass transfer coefficient with gas phase as a reference, K_G , for air-water interface as a function of k_L , k_G , and H_{cc} . Recall that the overall mass transfer coefficient with liquid phase as a reference is given as

$$K_{L} = \frac{k_{L}k_{G}H_{cc}}{k_{L} + k_{G}H_{cc}}$$
(L32 lecture note slide 8)

Derive the relationship between $K_{\rm L}$ and $K_{\rm G}.$ (30 points)

Answer) $J_{tot} = K_G (C_{bulk}^G - C_{bulk}^G *) = K_G (C_{bulk}^G - H_{cc} C_{bulk}^L)$ (set gas \rightarrow liquid as positive flux) $J_{tot} = k_L (C_{int}^L - C_{bulk}^L)$ $C_{int}^L - C_{bulk}^L = \frac{J_{tot}}{k_L}$ $J_{tot} = k_G (C_{bulk}^G - C_{int}^G)$ $C_{bulk}^G - C_{int}^G = \frac{J_{tot}}{k_G}$

$$\begin{split} J_{tot} &= K_G \Big\{ C^G_{bulk} - C^G_{int} + H_{cc} \Big(C^L_{int} - C^L_{bulk} \Big) \Big\} \\ &= K_G \Big(\frac{J_{tot}}{k_G} + H_{cc} \frac{J_{tot}}{k_L} \Big) \\ \frac{J_{tot}}{K_G} &= \frac{J_{tot}}{k_G} + \frac{J_{tot}}{k_L/H_{cc}} \end{split}$$

$$\frac{1}{K_G} = \frac{1}{k_G} + \frac{1}{k_L/H_{cc}} \text{ or } K_G = \frac{k_L k_G}{k_L + k_G H_{cc}}$$

Relationship between K_L and K_G:

 $K_{L} = H_{cc} \times K_{G}$

- 2. The K_La value for oxygen in an aerobic bioreactor is determined to be 5.0 hr⁻¹. What would be the K_La value for nitrous oxide (N₂O), a greenhouse gas that may be produced by biological reactions, in the bioreactor? Use the following data and assumptions.
 - * H_{cc} (oxygen) = 30; H_{cc} (nitrous oxide) = 1.7
 - * Surface renewal theory applies to the gas-liquid mass transfer.
 - * $k_G/k_L \approx 100.$
 - * Less than 5% error is negligible.
 - * Diffusion coefficient in water, D_{aq} D_{aq} (oxygen) = 2.0×10⁻⁹ m²/s; D_{aq} (nitrous oxide) = 1.6×10⁻⁹ m²/s

(20 points)

Answer)

As $R_G = \frac{1}{k_G H_{cc}} < \frac{1}{100} \frac{1}{k_L} = \frac{1}{100} R_L$ for both oxygen and nitrous oxide,

- Liquid phase boundary layer controls the gas-liquid mass transfer for both compounds
- If surface renewal theory holds, $k_L \propto D_{aa}^{0.5}$.
- So: $K_L \propto D_{aq}^{0.5}$ and so does $K_L a$ because a is a constant for the same bioreactor.

 K_{La} (nitrous oxide) = 5.0 $hr^{-1} \times \left(\frac{1.6 \times 10^{-9} \ m^2/s}{2.0 \times 10^{-9} \ m^2/s}\right)^{0.5} = 4.5 \ hr^{-1}$