Example question: Nucleophilic reactions

Following concentrations for anionic constituents are determined for a water sample with a pH value of 7.0 at $25^{\circ} \mathrm{C}$.

Constituents	Ionic weight	Concentration (mg/L)
$\mathrm{NO}_{3}{ }^{-}$	62.0	27.2
$\mathrm{SO}_{4}{ }^{2-}$	96.1	76.5
Cl^{-}	35.5	204.7
OH^{-}	17.0	can be derived from pH

The $n_{N u, C H_{3} B r}$ values for the anions are shown below:

Anionic nucleophiles	$n_{N u, C H_{3} B r}$
$\mathrm{NO}_{3}{ }^{-}$	1.0
$\mathrm{SO}_{4}{ }^{2-}$	2.5
Cl^{-}	3.0
OH^{-}	4.2

i) Determine the $[\mathrm{Nu}]_{50 \%}$ values for the anionic nucleophiles assuming $\mathrm{s}=1$. Considering the $[\mathrm{Nu}]_{50 \%}$ values and the nucleophile concentrations, list nucleophiles that are significant for reaction with $\mathrm{CH}_{3} \mathrm{Br}$ in the water. If the reaction rate for a nucleophile is more than 5\% of the hydrolysis rate, determine the nucleophile as significant.
ii) If $10^{-5} \mathrm{M}$ of $\mathrm{CH}_{3} \mathrm{Br}$ is added to the water sample, what will be the concentration of the products of nucleophilic substitution (including hydrolysis) after all the reactions occur completely? Consider only significant nucleophiles.

