Example question: Interphase mass transfer

1. Derive the overall mass transfer coefficient with gas phase as a reference, K_G , for air-water interface as a function of k_L , k_G , and H_{cc} . Recall that the overall mass transfer coefficient with liquid phase as a reference is given as

$$K_L = \frac{k_L k_G H_{cc}}{k_L + k_G H_{cc}}$$
 (lecture note slide 21)

Derive the relationship between K_L and K_G . (30 points)

2. You set up an experiment to determine the overall mass transfer coefficient with liquid phase as a reference, K_L , for gas-liquid transfer of oxygen and ethanol in a well-mixed reactor. You also need to estimate the K_L for nitrogen, which was not determined by the experiment. The results of the experiment, the unitless Henry's law constants, and the diffusion coefficients in water are as follows:

Compounds	K _L (m/s)	H _{cc}	$D_w (m^2/s)$
Nitrogen, N ₂	-	65	1.9×10 ⁻⁹
Oxygen, O ₂	2.0×10 ⁻⁵	30	2.1×10 ⁻⁹
Ethanol, C ₂ H ₅ OH	4.1×10 ⁻⁷	2.7×10 ⁻⁴	1.2×10 ⁻⁹

- i) Determine whether gas or liquid phase will control the mass transfer for each compound assuming a k_G/k_L of 100. Show your reasoning. (20 points)
- ii) Assuming that film theory is applicable, predict the K_L for nitrogen from the K_L data for oxygen. (20 points)

3. You sampled 200 cm 3 of water with a dissolved oxygen (DO) concentration of 5.0 mg/L in a beaker with a diameter of 5 cm. How long will it take for the DO to reach 6.5 mg/L? Use the overall mass transfer coefficient, K_L , of 0.01 m/h for still water in indoor environment suggested in the literature. Use the saturation DO concentration of 9.2 mg/L at 20°C. (30 points)