
Homework for Introduction to Algorithms (Spring of 2020)
Instructor: Kyuseok Shim

1. (Greedy Algorithm) Given a set {x1 ≤ x2 ≤ . . . ≤ xn} of points on the real line, determine
the smallest set of unit-length closed intervals (e.g. the interval [1.25, 2.25] includes all xi
such that 1.25 ≤ xi ≤ 2.25) that contains all of the points. Give the most efficient algorithm
you can to solve this problem, prove it is correct and analyze the time complexity. [20 pts.]

2. (Minimum Spanning Tree): In design of electronic circuitry, it is often necessary to
make the pins of several components electrically equivalent by wiring them together. To
interconnect a set of n pins, we can use an arrangement of n− 1 wires, each connecting two
pins. of all such arrangements, the one that uses the least amount of wire is usually the most
desirable.

We can model this wiring problem with a connected, undirected graph G = (V,E), where
V is the set of pins, E is the set of possible interconnections between pairs of pins, and for
each edge (u, v) ∈ E, we have a weight w(u, v) specifying the cost (amount of wire needed)
to connect u and v. We then wish to find an acyclic subset T ⊂ E that connects all of the
vertices and whose total weight

w(T) =
∑

(u,v)∈T

w(u, v)

is minimized. Since T is acyclic and connects all the vertices, it must form a tree, which we
call a spanning tree since it ”spans” the graph G. We call the problem of determining the
tree T the minimum-spanning-tree problem.

Assume that we have a connected, undirected graph G = (V,E) with a weight function
w : E → R, and we wish to find a minimum spanning tree for G. The two algorithms we
consider in this chapter use a greedy approach to the problem, although they differ in how
they apply this approach.

This greedy strategy is captured by the following ”generic” algorithm, which grows the min-
imum spanning tree one edge at a time.

Generic-MST(G, w)
begin
1. A = ∅
2. while A does not form a spanning tree do
3. find an edge (u, v) that is safe for A
4. A = A ∪ {(u, v)}
5. return A
end

1

1

The algorithm manages a set of edges A, maintaining the following loop invariant:

Prior to each iteration, A is a subset of some minimum spanning tree.

At each step, we determine an edge (u, v) that can be added to A without violating this
invariant, in the sense that A ∪ {(u, v)} is also a subset of a minimum spanning tree. We
call such an edge a safe edge for A, since it can be safely added to A while maintaining the
invariant.

A cut(S,V-S) of an undirected graph G = (V, E) is a partition of V. We say that an edge
(u, v) ∈ E crosses the cut(S, V − S) if one of its endpoints is in S and the other is in V − S.
We say that a cut respects a set A of edges if no edges in A crosses the cut. Note that there
can be more than one light edge crossing a cut in the case of ties. More generally, we say that
an edge is a light edge satisfying a given property if its weight is the minimum of any edge
satisfying the property. Our rule for recognizing safe edges is given by the following theorem.

Theorem 0.1: Let G = (V,E) be a connected undirected graph with a real-valued weight
function w defined on E. Let A be a subset of E that is included in some minimum spanning
tree for G, let (S, V −S) be any cut of G that respects A, and let (u, v) be a light edge crossing
(S, V − S). Then, edge (u, v) is safe for A.

(a) Prove the above Theorem. [4 pts.]

(b) Write the pseudo-code of Prim’s algorithm. Show why Prim’s algorithm is correct?
What is the time complexity of Prim’s algorithm? [3 pts.]

(c) For the graph shown in Figure 1, show the stages of Prim’s algorithm with v1 as the
root to show how each edge is selected in each step. [3 pts.]

Figure 1: A sample graph

(d) Let G =(V,E) be a connected, undirected graph with edge-weight function w : E → R,
and assume all edge weights are distinct. Consider a cycle < v1, v2, ..., vk, vk+1 > in G,
where vk+1 = v1, and let (vi, vi+1) be the edge in the cycle with the largest edge weight.
Prove that (vi, vi+1) does not belong to the minimum spanning tree T of G. [10 pts.]

(e) A graph G has edges which are colored either red or blue. Give the fastest algorithm
that you can to compute a spanning tree with as few blue edges as possible. What is
the run time of your algorithm? [5 pts.]

2

3. (Bellman-Ford algorithm) Consider the following properties.

Lemma 0.2: (Triangle inequality):
Let G = (V,E) be a weighted, directed graph with weight function w : E → R and source
vertex s. Then, for all edges (u, v) ∈ E, we have

δ(s, v) ≤ δ(s, u) + w(u, v)

Lemma 0.3: (Upper-bound property):
Let G = (V,E) be a weighted, directed graph with weight function w : E → R. Let
s ∈ V be the source vertex, and let the graph be initialized by INITIALIZE-SINGLE-
SOURCE(G,s). Then, d[v] ≥ δ(s, v) for all v ∈ V , and this invariant is maintained
over any sequence of relaxation steps on the edges of G. Moreover, once d[v] achieves
its lower bound δ(s, v), it never changes.

Corollary 0.4: (No-path property):
Suppose that in a weighted, directed graph G = (V,E) with weight function w : E → R,
no path connects a source vertex s ∈ V to a given vertex v ∈ V . Then, after the graph
is initialized by INITIALIZE-SINGLE-SOURCE(G,s), we have d[v] = δ(s, v) =∞, and
this equality is maintained as an invariant over any sequence of relaxation steps on the
edges of G.

Lemma 0.5: (Convergence property):
Let G = (V,E) be a weighted, directed graph with weight function w : E → R, let
s ∈ V be a source vertex, and let s u → v be a shortest path in G for some vertices
u, v ∈ V . Suppose that G is initialized by INITIALIZE-SINGLE-SOURCE(G,s) and
then a sequence of relaxation steps that includes the call RELAX(u, v, w) is executed on
the edges of G. If d[u] = δ(s, u) at any time prior to the call, then d[v] = δ(s, v) at all
times after the call.

Lemma 0.6: (Path-relaxation property):
Let G = (V,E) be a weighted, directed graph with weight function w : E → R and let
s ∈ V be a source vertex. Consider any shortest path p =< v0, v1, . . . , vk > from s = v0
to vk. If G is initialized by INITIALIZE-SINGLE-SOURCE(G,s) and then a sequence
of relaxation steps occurs that includes, in order, relaxations of edges (v0, v1), (v1, v2),
. . ., (vk−1, vk), then d[vk] = δ(s, vk) after these relaxations and at all times afterward.
This property holds no matter what other edge relaxations occur, including relaxations
that are intermixed with relaxations of the edges of p.

• For the graph shown in Figure 2, show the step-by-step change of the d[] values after
each iteration of the outer-loop of the pseudo code. (The source vertex is 1.) [5 pts.]

• Let G = (V,E) be a weighted, directed graph with source s and weight function w :
E → R, and assume that G contains no negative-weight cycles that are reachable from s.
Then, after the iterations of applying RELAX operations with for-loop in Bellman-Ford
algorithm, show that d[v] = δ(s, v) for all vertices that are reachable from s. [5 pts.]

3

Figure 2: A sample graph

4. (Dijkstra’s algorithm)

• Show the correctness of Dijkstra’s algorithm. In other words, prove that Dijkstra’s
algorithm, run on a weighted, directed graph G = (V,E) with non-negative weight
function w and source s, terminates with d[u] = δ(s, u) for all vertices u ∈ V . [5 pts.]

• You are given a strongly connected directed graph G = (V, E) with positive edge weights
along with a particular node v0 ∈ V . Describe an O((|V | + |E|) lg |V |) time algorithm
for finding shortest paths between all pairs of nodes, with the one restriction that these
paths must all pass through v0. [10 pts.]

4

5. (NP-complete) Consider the following NP-complete problems.

• HAMILTONIAN PATH PROBLEM:
Given a graph G = (V,E), does G contain a Hamiltonian path? For a graph G = (V,E),
a simple path in G is a sequence 〈v1, v2, . . . , vk〉 of distinct vertices from V such that
(vi, vi+1) ∈ E with 1 ≤ i < k. A Hamiltonian path in G is a simple path that includes
all the vertices of G.

• CLIQUE PROBLEM:
Given a graph G = (V,E) and a positive integer K, does G contain a clique of size K?
For a graph G = (V,E), a clique of size K is defined as a subset of vertices V ′ ⊂ V , each
pair of which is connected by an edge in E and |V ′| = K.

Answer the following questions:

• Show DEGREE-CONSTRAINED SPANNING TREE PROBLEM is NP-complete.
DEGREE-CONSTRAINED SPANNING TREE PROBLEM: Let G = (V,E) be a graph
and K be a positive integer. Does G have a spanning tree in which no node has degree
greater than K? [20 pts.]

• Show MAXIMUM 2-CNF-SAT PROBLEM is NP-complete.
MAXIMUM 2-CNF-SAT PROBLEM: A boolean formula is called 2-conjunctive normal
form (2-CNF), if each clause has exactly two distinct literals. Given a 2-CNF φ and a
positive integer K, is there any assignment which satisfies at least K of the clauses? [20
pts.]

5

