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Typical Modeling Equations

𝐺 ൌ 𝑋𝐺
  𝑋𝐺

  𝑅𝑇 𝑋𝑙𝑛𝑋  𝑋𝑙𝑛𝑋  𝐺ா

with the molar Gibbs energy given as:
𝐺ா ൌ 𝐻ா െ 𝑇𝑆ா ൌ 𝛼𝑋𝑋

where 𝑋 and 𝐺
 are the molar fraction and standard molar Gibbs energy of component 𝑖, 

and R is the ideal gas constant.

The configurational entropy െ𝑅ሺ𝑋𝑙𝑛𝑋  𝑋𝑙𝑛𝑋ሻ is obtained from the Bragg-Williams 
assumption of random mixing of A and B on a quasilattice. If the parameter 𝛼 is positive, 
a miscibility gap results.



Using Bragg-Williams empirical expansion

In order to fit experimental phase equilibrium and thermodynamic data and develop 
databases of model parameters, following expansion is used.

𝛼 ൌ 𝐿
  𝐿

ଵ 𝑋 െ 𝑋  𝐿
ଶ 𝑋 െ 𝑋

ଶ  ⋯

where the 𝐿
 are empirical model parameters which may be functions of 𝑇.

Fit Result : To reproduce adequately experimental binary miscibility gaps, several 
empirical terms are required in equation above. If only two or three temperature 
independent parameters are used, the resultant calculated gaps are usually significantly 
higher and more rounded than experimental gaps which tend to be “flatter”.

Fit Resultant is posted as Figure 1,2



Modified quasi-chemical model (MQM) in the nearest-neighbor pair approximation

Consider a solution of atoms or molecules A and B which are distributed over the sites of 
quasi-lattice. A first-nearest-neighbor pair exchange reaction can be written:

𝐴 െ 𝐴   𝐵 െ 𝐵  ൌ 2 𝐴 െ 𝐵 ;  ∆𝑔       ሺ4ሻ

If the Gibbs energy change ∆𝑔 of this reaction is positive, then (A-A) and (B-B) pairs are 
favored over (A-B) pairs. In the random mixing Bragg-Williams approximation, the 
probabilities of (A-A), (B-B) and (A-B) pairs are always 𝑋

ଶ, 𝑋
ଶ, and 2𝑋𝑋 respectively. 

Hence, the system can only reduce the number of energetically unfavorable (A-B) pairs by 
separating into two immiscible phases.

In reality, however, clustering of A and B can occur within a single-phase solution, thereby 
permitting an increase in the number of favorable (A-A) and (B-B) pairs without separation 
into two phases. Such clustering will be most pronounced, and have the greatest effect in 
lowering the Gibbs energy, in the central composition region where 𝑋 ൎ 𝑋. In the dilute 
terminal composition regions, the configurational entropy terms predominate and so the 
solution tends toward random mixing. As a result, short-range-order(SRO) has the largest 
effect on lowering the miscibility gap in the central composition region, thereby producing 
the observed “flattened” shape.



MQM modeling equations

Let Z be the nearest-neighbor coordination number. Then, for one mole of solution:
𝑍𝑋 ൌ 2𝑛  𝑛               ሺ5ሻ
𝑍𝑋 ൌ 2𝑛  𝑛               ሺ6ሻ

where 𝑛, 𝑛 and 𝑛 are the numbers of moles of pairs in one mole of solution. Pair fractions 𝑋 are 
defined as:

𝑋 ൌ
𝑛

𝑛  𝑛  𝑛
            ሺ7ሻ

The molar Gibbs energy is assumed to be given by:

𝑔 ൌ 𝑋𝑔
  𝑋𝑔

 
𝑛

2 ∆𝑔 െ 𝑇∆𝑠            ሺ8ሻ

The configurational entropy ∆𝑠 is given by randomly distributing the first-neighbor pairs over “pair 
positions”. In three dimensions the exact mathematical expression is unknown. The following approximate 
expression is obtained:

∆𝑠 ൌ െ𝑅 𝑋𝑙𝑛𝑋  𝑋𝑙𝑛𝑋 െ 𝑅 𝑛 ln
𝑋

𝑋
ଶ  𝑛 ln

𝑋

𝑋
ଶ  𝑛 ln

𝑋
2𝑋𝑋

          ሺ9ሻ



MQM modeling equations

Minimizing the Gibbs energy subject to the constraints of equations (5) and (6) yields the following “quasi-
chemical equilibrium constant” for reaction (4):

𝑋
ଶ

𝑋𝑋
ൌ 4 exp െ

∆𝑔
𝑅𝑇            ሺ10ሻ

At a given composition, and for a given value of ∆𝑔, equations (5), (6), and (10) can be solved to give 𝑋
which can then be substituted back into equations (7)-(9). When ∆𝑔 ൌ 0, the solution is a random ideal 
solution. As ∆𝑔 becomes progressively more positive, reaction (4) is displaced progressively to the left and the 
degree of short-range-order increases.

For purposes of optimization, ∆𝑔 may be explained as a polynomial in mole fractions:

𝑙
  𝑙

ଵ 𝑋 െ 𝑋  𝑙
ଶ 𝑋 െ 𝑋

ଶ  ⋯        ሺ11ሻ

where 𝑙
 are adjustable model parameters. When ∆𝑔 is small, it follows from equation (10) that the pair 

fractions are close to their values in a randomly distributed solution (𝑋 ൌ 𝑋
ଶ,  𝑋 ൌ 𝑋

ଶ,  𝑋 ൌ 2𝑋𝑋ሻ. Hence the 

configurational entropy is close to the ideal (Bragg-Williams) entropy, and 𝑛 ൎ 2𝑋𝑋

ଶ

, where 
ଶ

is the 

total number of pairs in a mole of solution. The molar Gibbs energy expression from equation (8) is then 
approximately the same as equations (1) and (2) with 𝛼 ൎ ∆𝑔


ଶ

and with all parameters 𝐿
 ൎ 𝑙

 ሺ𝑍/2ሻ.



MQM modeling fit

Equation (9) for the entropy can be shown to be exact only for a one-dimensional lattice (𝑍 ൌ 2). In three 
dimensions the equation is only approximate since no exact solution of the three dimensional Ising model is 
known. The error introduced by this approximation can be offset through the choice of somewhat non-physical 
values of 𝑍. From our experience in applying the MQM to many liquid metallic solutions, we have found that a 
value of approximately 𝑍 ൌ 6 yields the best results, although the calculations are not highly sensitive to this 
parameter.

Fitting result: Figure 1~2



MQM modeling fit result- (Ga+Hg) system

The miscibility gap in the (Ga+Hg) system with the 
MQM with one temperature-independent parameter, , 

∆𝑔ீு

ଶ

ൌ 9790𝐽 · 𝑚𝑜𝑙ିଵ, selected so as to 

reproduce the measured monotectic temperature and 
compositions. 

It can be seen in figure 1 that the experimental 
miscibility gap is reproduced very closely at all 
temperatures and compositions.

Furthermore, as seen in figure 3, the measured excess 
enthalpy is also reproduced very closely.



MQM modeling fit result- (Ga+Pb) system

For (Ga+Pb) system, two temperature-independent 
parameters were used. Again, the experimental miscibility 
gap and excess enthalpy are reproduced very well. 

It can be seen in table 1 that the numeric values of the 
MQM parameters are very similar to those used in the 
Bragg-Williams model.

Note that the data for ℎா are closely reproduced even 
though the model parameters are temperature-independent, 
thereby showing that the entropy is well represented by the 
configurational entropy expression in equation (9); non-
configurational excess entropy terms are not required.



MQM modeling fit conclusion

Most systems with liquid miscibility gaps, only limited data are available. Generally, the 
boundaries of the gaps have been measured only near the monotectic temperatures, not near 
the consolute temperatures, and data for the excess enthalpy are lacking. In such cases if the 
empirical MQM parameters are optimized based only on the measured compositions of the 
boundaries of the miscibility gap at lower temperatures, the gap boundaries at higher 
temperatures and the excess enthalpy will be predicted by the MQM with much better 
accuracy than is the case with the Bragg-Williams model. 
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Sub-Regular Solutions

The excess molar heat of solution of a binary solid solution is given by

∆𝐻 ൌ
1
2 𝑍𝑁 2𝑉 െ 𝑉  𝑉 𝑥𝑦 ൌ 𝐴𝑥𝑦

where Z is the coordination number, 𝑁 is the Avogadro’s number, 𝑉, 𝑉, and 𝑉 are the 
interaction energies, and 𝑥 and 𝑦 are the atomic fractions of 𝑋 and 𝑌 components.

The next simple assumption is to make 𝐴 a rectilinear function of composition so that

∆𝐻 ൌ 𝐴ଵ𝑥  𝐴ଶ𝑦 𝑥𝑦 ൌ 𝐴ଵ𝑥ଶ𝑦  𝐴ଶ𝑥𝑦ଶ 

and the model may logically be termed “sub-regular”.



Sub-Regular Solutions

The free energy per mole is given by

𝐹 ൌ 𝑥𝜇
  𝑦𝜇

  𝐴ଵ𝑥ଶ𝑦  𝐴ଶ𝑥𝑦ଶ  𝑅𝑇 𝑥𝑙𝑛𝑥  𝑦𝑙𝑛𝑦      ሺ5ሻ

so that the chemical potentials are

𝜇 ൌ 𝜇
  𝑅𝑇𝑙𝑛𝑥  𝑦ଶ 2𝐴ଵ െ 𝐴ଶ  𝑦ଶሺ2𝐴ଶ െ 2𝐴ଵሻ

𝜇 ൌ 𝜇
  𝑅𝑇𝑙𝑛𝑦  𝑥ଶ 2𝐴ଶ െ 𝐴ଵ  𝑥ଶሺ2𝐴ଵ െ 2𝐴ଶሻ

(6)

Differentiation gives
𝜕𝜇
𝜕𝑥 ൌ

𝑅𝑇
𝑥  2𝐴ଵ𝑦 1 െ 3𝑥  2𝐴ଶ𝑦ሺ1 െ 3𝑦ሻ

𝜕ଶ𝜇
𝜕𝑥ଶ ൌ െ

𝑅𝑇
𝑥ଶ  2𝐴ଵ 6𝑥 െ 4  2𝐴ଶሺ5 െ 6𝑥ሻ

𝜕𝜇
𝜕𝑦 ൌ

𝑅𝑇
𝑦  2𝐴ଵ𝑥 1 െ 3𝑥  2𝐴ଶ𝑥ሺ1 െ 3𝑦ሻ

𝜕ଶ𝜇
𝜕𝑥ଶ ൌ െ

𝑅𝑇
𝑦ଶ  2𝐴ଵ 5 െ 6𝑦  2𝐴ଶሺ6𝑦 െ 4ሻ

(7a)~(7d)



Sub-Regular Solutions

The spinodal curve is obtained by equating equations (7a) or (7c) to zero so that

𝑅𝑇 ൌ 2𝑥ଶ𝑦 2𝐴ଵ െ 𝐴ଶ  2𝑥𝑦ଶሺ2𝐴ଶ െ 𝐴ଵሻ

Equations (7b) and (7d) are also zero at the critical point for phase separation, subtracting 
equation (7d) from (7b) and re-arranging gives

𝑅𝑇 𝑥 െ 𝑦 ൌ 6𝑥ଶ𝑦ଶሺ𝐴ଵ െ 𝐴ଶሻ

Solving between equations (8) and (9) gives 𝐴ଵ and 𝐴ଶ at the critical point and

𝐴ଵ ൌ
𝑅𝑇

6𝑥
ଶ𝑦

ଶ ሺെ9𝑥
ଶ  10𝑥 െ 2ሻ

𝐴ଶ ൌ
𝑅𝑇

6𝑥
ଶ𝑦

ଶ ሺെ9𝑦
ଶ  10𝑦 െ 2ሻ



Sub-Regular Solutions

𝐴ଵ ൌ 𝐴ଶ ൌ 2𝑅𝑇 when 𝑥 ൌ 0.5 and the equations reduce to these for a regular solution 
with a symmetrical solubility curve. The difference between 𝐴ଵ and 𝐴ଶ increases as 𝑥
deviates from the equiatomic composition. 𝐴ଵ is zero when 𝑥 ൌ 0.26 and 0.85. Solubility 
curves which are very strongly asymmetrical require both 𝐴ଵ and 𝐴ଶ to be negative.



Sub-Regular Solutions

The solid solubility boundaries are defined by the conditions

𝜇 1 ൌ 𝜇 2           ሺ11𝑎ሻ
𝜇 1 ൌ 𝜇 2            ሺ11𝑏ሻ

making the chemical potential of each component equal in the equilibrium co-existing 
phases. The values of 𝐴ଵ and 𝐴ଶ in equation (6) can thus be calculated from the solubility 
data at any temperature, since the terms in 𝜇 cancel in equations (11), as long as the two 
terminal solid solutions have the same lattice structure. Only systems in which it is 
hypothetically possible to have unlimited solubility above a critical temperature (which 
may be above the melting point) are dealt with in the present work.



Sub-Regular Solutions

Subtracting equations (11a) and (11b), inserting the values from equations (6) and 
rearranging leads to 

𝑅𝑇𝑙𝑛
𝑥ଵ
𝑥ଶ

െ 𝑅𝑇𝑙𝑛
𝑦ଵ
𝑦ଶ

െ 𝐴ଵ 𝑥ଵ െ 𝑥ଶ 3𝑥ଵ  3𝑥ଶ െ 2  𝐴ଶ 𝑦ଵ െ 𝑦ଶ 3𝑦ଵ  3𝑦ଶ െ 2 ൌ 0

where 𝑥ଵ, 𝑥ଶ, 𝑦ଵ, 𝑦ଶ are the atomic fractions at the solubility curves. This may be 
compared with the equation for the solubility curve of a regular solution which is 

𝑅𝑇𝑙𝑛
𝑥ଵ
𝑥ଶ

െ 𝐴 𝑥ଵ െ 𝑥ଶ ൌ 0

Multiplying equation (11a) by ሺ𝑥ଵ  𝑥ଶሻ and equation (11b) by ሺ𝑦ଵ  𝑦ଶሻ, adding and 
simplifying gives

𝜙 ≡ 𝑥ଵ  𝑥ଶ 𝑅𝑇𝑙𝑛
𝑥ଵ
𝑥ଶ

 𝑦ଵ  𝑦ଶ 𝑅𝑇𝑙𝑛
𝑦ଵ
𝑦ଶ

ൌ െ 𝐴ଵ െ 𝐴ଶ 𝑥ଵ െ 𝑥ଶ
ଷ

In which both sides are zero for a regular solution. When the left-hand side is plotted 
against 𝑥ଵ െ 𝑥ଶ

ଷ a straight line passing through the origin at 𝑇 ൌ 𝑇 will be obtained 
as long as 𝐴ଵ െ 𝐴ଶ is independent of temperature.



Sub-Regular Solutions – Stepping Further

The interpretation of 𝐴ଵ and 𝐴ଶ is not limited to heats of solution but they can also 
be identified with a free energy of solution. They will then be temperature dependent, 
but this in no way influences the previous analysis which has, in effect, been carried 
out at constant temperature. The entropy and heat of solution must of course be 
obtained by differentiation of equation (5) and the latter is no longer given by 
equation (2).


