HW 3.
Governing equation:
$\frac{\partial}{\partial x}(\rho u \phi)=\frac{\partial}{\partial x}\left(\Gamma \frac{\partial \phi}{\partial x}\right)$,
Exact solution:
$\phi=\phi_{0}+\frac{e^{x P e / L}-1}{e^{p e}-1}\left(\phi_{L}-\phi_{0}\right)$,
where $P e=\rho u L / \Gamma, P e_{\Delta}=\rho u \Delta / \Gamma$.

1. \# of grid pts, $\mathrm{N}=11$ including boundary points (uniform grids).

1-1. Convection term for UDS
1-2. Convection term for CDS
2. \# of grid pts, $\mathrm{N}=41$ including boundary points (uniform grids).

1-1. Convection term for UDS
1-2. Convection term for CDS
3. Non-uniform grids with $\mathrm{N}=11\left(\Delta x_{i}=r e \Delta x_{i-1}, r_{e}=0.75\right)$

1-1. Convection term for UDS
1-2. Convection term for CDS
The condition for the numerical simulations:
$L=1, \rho=1, u=1, \Gamma=0.02$
$\phi_{0}=0, \phi_{L}=1, P e=\frac{\rho u L}{\Gamma}=50$
Plot the $\log \Delta x$ vs. $\log \varepsilon$ graph for $\varepsilon=\operatorname{Max}\left|\phi_{i}^{\text {exact }}-\phi_{i}\right|$ and discuss the results.

