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1. [Electron MHD] Electron MHD (E-MHD) model assumes immobile ions

and so that electrons carry all electric current under magnetic field ~B.

(a) Assuming uniform density n, isotropic resistivity η, and incompressible elec-
tron flow ~ue, derive the magnetic diffusion equation for E-MHD;
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where de is electron skin depth you can define.

(b) Discuss physical insights that you can develop from these equations for the
ideal E-MHD model.

2. [Energy Conservation in MHD (GR: Problem 8.2)] Using the single-
fluid MHD momentum equation

ρ
d~u

dt
= σ ~E +~j × ~B − ~∇p (2)

and assuming ideal fluid frozen to magnetic fields, i.e. ~E + ~u × ~B = 0, deduce
the energy conservation equation;
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(3)

Note: This problem is closely related to the discussions in the Ch 8.6 and the
Problem 8.2 in Goldston&Rutherford’s book.
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3. [Fluid vs. Particle Drift] Show that the charge accumulation due to
the drift motions implied in fluid picture becomes equivalent to one in single
particle picture. Specifically, show ~∇ · ~vp = ~∇ · (~vB + ~vcurv), where each drift ~v is
the diamagnetic, gradient-B, and curvature drift, respectively, under a vacuum
magnetic field ~B.

4. [HARD: Three-field Equations] Suppose that the magnetic field ~B =

B0ẑ + ~∇ψ × ẑ and the ion fluid velocity ~ui = u‖ẑ + ~uE where ~uE = ~∇φ × ẑ
in a slab geometry. Here, ψ = ψ(x, y) and φ = φ(x, y), and B0 is the constant
magnetic field and u‖ is the constant parallel flow in equilibrium. Assume the ion
fluid velocity is the same as the single fluid velocity, and the charge neutrality
ne = ni = n. Let Te = T constant, and Ti = 0 (cold ion assumption).

Using the electron continuity equation, the parallel Ohm’s law, and the equation
of single fluid motion in the perpendicular direction (i.e. taking the operator

ẑ · ~∇×), drive the following three-field (n, ψ, ω(φ)) closure equations. You will

have to use ~Ez = −ẑ · ∂ ~A/∂t where ~B = ~∇ × ~A, and also will need to assume
~∇ · ~j = 0 while having ~j ≈ ẑj, and then ~∇n × (~j × ~B) ≈ 0. These last two
assumptions are ultimately related to a specific ordering which separates these
non-ideal evolution from the faster ideal equilibrium response. Ignore electron
mass, anisotropic pressure, and also all source terms.

∂n

∂t
+ ~uE · ~∇n =

1

e
∇‖j − u‖∇‖n, (4)

∂ψ

∂t
+ ~uE · ~∇ψ = −ηj +

T

ne
∇‖n, (5)

ρm
∂ω

∂t
+ ρm~uE · ~∇ω = B0∇‖j, (6)

where the parallel current j = −∇2ψ, and the vorticity ω ≡ −∇2φ. Note that
∇‖ = ∂/∂z simply in our geometry, but generally means the gradient (almost)
parallel to the equilibrium magnetic field.
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