Assignment:

For the following helicopter data,
Weight, $W=45,000 \mathrm{~N}$
Radius, $R=6.6 \mathrm{~m}$
Chord, $c=0.5 \mathrm{~m}$
Number of blades, $N_{b}=4$
Rotational speed, $\Omega=250 \mathrm{RPM}$,
Lift curve slope, $a=2 \pi$
Drag coefficient, $C_{d 0}=0.01$ and 0.001 (two cases)
Empirical correction factor (to correct for non-uniform inflow, tip loss, and slipstream swirl, by applying the following formula)

$$
\lambda=\kappa_{h} \sqrt{\frac{\mathrm{C}_{\mathrm{T}}}{2}}
$$

$\kappa_{h}=1.15$
$\rho=1.224 \mathrm{Kg} / \mathrm{m}^{3}$
Pretwist, $\theta_{t w}=0.0$
Solve
(i) Inflow, pitch angle in degrees, induced power, profile power, and figure of merit under a small angle assumption.
(ii) Inflow, pitch angle in degree, induced power, profile power, and figure of merit without the small angle assumption. Develop and implement all the required equations using a computational software like Mathematica or MATLAB.
(iii) Compare the results between (i) and (ii), and submit your own discussion.

Due date: 04/17/2020 6:00 PM (to be submitted by an electrical form)

