Assignment:

.....

For the following helicopter data, Weight, W=45,000N Radius, R=6.6 m Chord, c=0.5 m Number of blades, $N_b=4$

Rotational speed, $\Omega = 250$ RPM,

Lift curve slope, $a = 2\pi$

Drag coefficient, $C_{d0} = 0.01$ and 0.001 (two cases)

Empirical correction factor (to correct for non-uniform inflow, tip loss, and slipstream swirl, by applying the following formula)

$$\lambda = \kappa_h \sqrt{\frac{C_T}{2}}$$

*к*_h= 1.15

 $\rho = 1.224 \text{ Kg/m}^3$

Pretwist, $\theta_{tw} = 0.0$

Solve

- (i) Inflow, pitch angle in degrees, induced power, profile power, and figure of merit under a small angle assumption.
- (ii) Inflow, pitch angle in degree, induced power, profile power, and figure of merit without the small angle assumption. Develop and implement all the required equations using a computational software like Mathematica or MATLAB.
- (iii) Compare the results between (i) and (ii), and submit your own discussion.

Due date: 04/17/2020 6:00 PM (to be submitted by an electrical form)