Helicopter Engineering H.W. No. 3

Due: 06/03/2020 (Wed) 6:00PM

V:= +

Problem #1 Consider two tandem (non-overlapping) rotors, each having thrust T/2 and disk area A1, with total power

$$P_1 = P_{i1} + P_{01}$$

where P - denotes total power, Pi - denotes induced power and Po - denotes profile power. Next consider two co-axial rotors, each having thrust T/2 and disk area A2, with total power

$$P_2 = P_{i2} + P_{02}$$

Furthermore, assume small vertical separations between the co-axial rotors.

If
$$P_{02}/P_{i2} = P_{01}/P_{i1}$$
 and $V_{t2} = V_{t1}$

and
$$\sigma_2 = \sigma_1$$
, find A_2/A_1 and P_2/P_1 .

Where V_t is the tip speed and σ is the blade solidity.

Problem #2

(a) Use the simple energy method to calculate the rotor horsepower required at $\mu =$ 0.10; 0.20; and 0.3 for the following helicopter in forward flight.

$$W = 3000 \text{ lb}$$

 $R = 15 \text{ ft}$

$$\sigma = 0.075$$

$$C_{d0} = 0.012$$

$$\Omega R = 600 \text{ ft/sec}$$

$$f = 8 \text{ ft}_2 \text{ (equivalent flat plate area)}$$

$$\rho = 0.00238 \operatorname{slug} \int ft^3$$

use
$$\frac{v}{\Omega R} \approx \frac{C_T}{2\mu}$$
, $\mu \ge 0.1$

and include the radial flow component in the calculation of the profile power.

- (b) Calculate rate of climb at the same \u03c4's given that the available power is 150\u03c4 of the hover power required (main rotor).
- (c) Calculate rate of descent (minimum) at same µ's (power off).
- Calculate rate of descent at the same \u03c4's given that available power is 50% of (d) hover power required (main rotor). What phenomenon might limit this type of operation? Tactor works interest