1. Using usual rules of index notation $(i, j, k=1,2,3)$, evaluate the following expressions.
(i) $\delta_{i j} \delta_{i j}$ (ii) $\varepsilon_{i j k} \varepsilon_{k j i}$ (iii) $\varepsilon_{i j k} a_{i} a_{k}$ (iv) $\varepsilon_{i j k} \frac{\partial^{2} \phi}{\partial x_{i} \partial x_{j}}$ (v) $a_{i} b_{j} \delta_{i j}$
2. Prove the following vector identities that, among other ideas, extend the chain rule to vector operations. Here, $a(x)$ and $b(x)$ are vector functions of position $x ; \phi(x)$ is a scalar function of position.
(i) $\nabla \cdot(\phi a)=\phi \nabla \cdot a+a \cdot \nabla \phi$
(ii) $\nabla \times(\phi a)=\phi \nabla \times a+(\nabla \phi) \times a$
(iii) $\nabla \cdot(\nabla \times a)=0$
(iv) $\nabla \times(\nabla \phi)=0$
(v) $\nabla \times(a \times b)=(b \cdot \nabla) a-b(\nabla \cdot a)-(a \cdot \nabla) b+a(\nabla \cdot b)$
(vi) $\nabla \cdot(a \times b)=(\nabla \times a) \cdot b-a \cdot(\nabla \times b)$
(vii) $\nabla \cdot(a b)=(\nabla \cdot a) b+a \cdot(\nabla b)$
(viii) $\nabla \times(\nabla \times a)=\nabla(\nabla \cdot a)-\nabla^{2} a$
3. Prove followings.
(i) If C is a second-order tensor and a is an arbitrary vector, prove $a \cdot C=C \cdot a$ if and only if $C=C^{T}$, i.e., C is symmetric.
(ii) If $C=-C^{T}(C$ is anti-symmetric), then show $a \cdot C \cdot a=0$.
(iii) If B is an anti-symmetric second-order tensor, show that $B \cdot B$ is a symmetric second-order tensor.
(iv) Verify $(A \cdot B)^{T}=B^{T} \cdot A^{T}$ using index notation.
4. If x is the position vector $x=\left(x_{1}, x_{2}, x_{3}\right)=(x, y, z)$, then evaluate:
(i) $\nabla \cdot x$ (ii) $\nabla \times x$ (iii) ∇x
5. State whether the following equations are correctly written or not. If the index notation is incorrect, briefly state why it is incorrect.
(i)

$$
\frac{\partial \phi}{\partial t}=a_{k} \frac{\partial \phi}{\partial x_{k}}+\phi \frac{\partial a_{k}}{\partial x_{k}}+\nu \frac{\partial^{2} a_{k}}{\partial x_{k} \partial x_{k}}+\phi g_{k} b_{k}
$$

(ii)

$$
\frac{\partial a_{k}}{\partial t}=-u_{j}\left(\frac{\partial a_{k}}{\partial x_{j}}-\frac{\partial a_{j}}{\partial x_{k}}\right)+A_{i j} \frac{\partial a_{k}}{\partial x_{i}} \frac{\partial a_{k}}{\partial x_{j}}+\frac{1}{\rho} \frac{\partial}{\partial x_{j}}\left(\mu \frac{\partial a_{k}}{\partial x_{j}}\right)+g_{j} b_{k}
$$

(iii)

$$
\begin{aligned}
\frac{\partial R_{i j}}{\partial t} & =-u_{k} \frac{\partial R_{i j}}{\partial x_{k}}-R_{i k} \frac{\partial u_{j}}{\partial x_{k}}-R_{j k} \frac{\partial u_{i}}{\partial x_{k}}+p\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right) \\
& +\phi\left(\frac{\partial u_{i}}{\partial x_{k}}-\frac{\partial u_{k}}{\partial x_{i}}\right)\left(\frac{\partial u_{j}}{\partial x_{\ell}}-\frac{\partial u_{\ell}}{\partial x_{j}}\right)+\nu \frac{\partial u_{i}}{\partial x_{k}} \frac{\partial u_{j}}{\partial x_{\ell}}\left(\frac{\partial a_{\ell}}{\partial x_{k}}+\frac{\partial a_{k}}{\partial x_{\ell}}\right)-g \delta_{i j}
\end{aligned}
$$

(iv)

$$
\frac{\partial}{\partial t}(\rho \phi)+\frac{\partial}{\partial x_{k}}\left(\rho \phi u_{k}\right)=\nu \frac{\partial \rho}{\partial x_{k}} \frac{\partial \phi}{\partial x_{k}}+a \rho \phi\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right)\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right)+\rho u_{k} f_{k}
$$

$$
\begin{equation*}
\frac{\partial}{\partial t}\left(\rho a_{j}\right)+\frac{\partial}{\partial x_{k}}\left(\rho a_{j} u_{k}\right)=\beta \frac{\partial a_{i}}{\partial x_{k}} \frac{\partial u_{j}}{\partial x_{k}}+\mu \frac{\partial^{2} a_{j}}{\partial x_{k} \partial x_{k}}+\rho f_{i} \tag{v}
\end{equation*}
$$

(vi)

$$
\begin{aligned}
\frac{\partial}{\partial t}\left(\rho b_{i j}\right)+\frac{\partial}{\partial x_{k}}\left(\rho b_{i j} u_{k}\right) & =\alpha\left(T_{i j}+T_{j i}\right)+\gamma\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right)\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right) \\
& +\varepsilon_{i j k} \mu \frac{\partial^{2} b_{\ell \ell}}{\partial x_{k} \partial x_{k}}+\rho f_{i} g_{j}
\end{aligned}
$$

