담당교수: 최용주

Homework #2 - Solutions

Due: April 21, 2016 (Tue), in class

1. Determine the pH of a buffer prepared by dissolving 5×10^{-4} M NaAc and 5×10^{-4} M HAc in pure water using i) numerical calculation method and ii) graphical method (pH-pC diagram).

(25 points)

Answer)

Equilibrium constants:

$$K_w = [H^+][OH^-] = 10^{-14} \tag{1}$$

$$K_a = \frac{[H^+][Ac^-]}{[HAc]} = 10^{-4.75}$$
(2)

Mass balance:

$$C_T = 10^{-4} M = 2[Na^+] = [HAc] + [Ac^-]$$
(3)

Charge balance:

$$[Na^{+}] + [H^{+}] = [Ac^{-}] + [OH^{-}]$$
(4)

i) numerical calculation

Assume $[Na^+] = \frac{1}{2}C_T \gg [H^+], \ [Ac^-] \gg [OH^-]$ Then, from (4): $[Ac^-] = \frac{1}{2}C_T$ From (3): $[HAc] = \frac{1}{2}C_T$ From (2): $[H^+] = 10^{-4.75} M = 1.8 \times 10^{-5} M$ From (1): $[OH^{-}] = 10^{-9.25} = 5.6 \times 10^{-10} M$

check the assumption:

$$\frac{1}{2}C_T = 5 \times 10^{-4} M \gg [H^+] = 1.8 \times 10^{-5} M, \text{ if we accept } <5\% \text{ error.}$$
$$[Ac^-] = 5 \times 10^{-4} M \gg [OH^-] = 5.6 \times 10^{-10} M$$
$$\therefore pH = 4.75 \text{ or } pH = 4.8$$

(It is better representing the data by rounding to one decimal place (pH=4.8) because we accepted <5% error. It is expected that the exact solution is slightly greater than 4.75, but the result should not exceed 4.8. 5% error generates 0.02 log unit difference.)

** Exact solution, not accepting the error:

Substituting into (2): $\frac{[H^+][Ac^-]}{C_T - [Ac^-]} = K_a$

From (3): $[HAc] = C_T - [Ac^-]$

$$[Ac^{-}] = \frac{C_T K_a}{[H^+] + K_a}$$

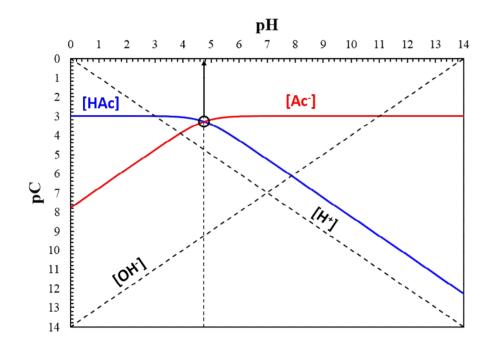
Substituting into (4):

$$\frac{1}{2} C_T + [H^+] = \frac{C_T K_a}{[H^+] + K_a} + \frac{K_w}{[H^+]}$$

Rearranging the equation:

$$[H^+]^3 + \left(\frac{1}{2} C_T + K_a\right) [H^+]^2 - \left(\frac{1}{2} C_T K_a + K_w\right) [H^+] - K_w K_a = 0$$

Solving this third-order equation gives


$$[H^+] = 1.68 \times 10^{-5}, pH = 4.77$$

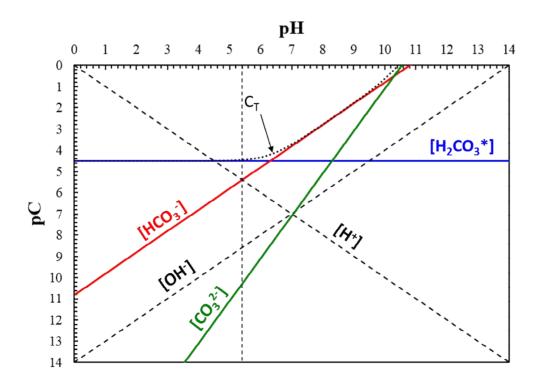
So, the exact solution gives only 0.02 difference in the pH value.

ii) graphical method From (3) and (4): $\frac{1}{2}[HAc] + \frac{1}{2}[Ac^{-}] + [H^{+}] = [Ac^{-}] + [OH^{-}]$ $\frac{1}{2}[HAc] + [H^{+}] = \frac{1}{2}[Ac^{-}] + [OH^{-}]$

or $[HAc] + 2[H^+] = [Ac^-] + 2[OH^-]$

Drawing the pC-pH diagram for HAc with $C_T=10^{-3}$ M:

From the diagram, when $[HAc] = [Ac^{-}]$, $[OH^{-}]$ is sufficiently small, and the difference between [HAc] and $[H^{+}]$ is approximately 1.6 log unit, so $2[H^{+}]$ is approximately 1.3 log unit smaller than [HAc] (~5% of [HAc]). Accepting this error, we can select the point satisfying $[HAc] = [Ac^{-}]$.


 $\therefore pH=4.75$ (when $[HAc]=[Ac^{-}]$ then $pK_{a}=pH$, so you don't have to read the graph), or pH=4.8, considering error.

2. The current atmospheric partial pressure of CO₂ is around $10^{-3.5}$ atm, and you have seen that the rainwater pH at this condition is approximately 5.6 assuming equilibrium. According to the Intergovernmental Panel on Climate Change (IPCC), the 2100 atmospheric CO₂ concentration is predicted to be 1000 ppm (= $10^{-3.0}$ atm) applying the worst case scenario. Estimate the rainwater pH in equilibrium with 1000 ppm CO₂ in the atmosphere. Use the graphical method (pH-pC diagram) for estimation. (K_H for CO₂ = $10^{-1.5}$ M/atm)

Answer)

$$\begin{split} P_{CO_2} &= 10^{-3.0} \ atm \\ p[H_2CO_3^*] &= p(K_H P_{CO_2}) = p(10^{-1.5} \ M/atm \cdot 10^{-3.0} \ atm) = 4.5 \\ p[HCO_3^-] &= p(K_H P_{CO_2}) + pK_{a1} - pH = 4.5 + 6.3 - pH = 10.8 - pH \\ p[CO_3^{2-}] &= p(K_H P_{CO_2}) + pK_{a1} + pK_{a2} - 2pH = 4.5 + 6.3 + 10.3 - 2pH = 21.1 - 2pH \end{split}$$

The pH-pC diagram is drawn as below:

Charge balance: $[H^+] = [HCO_3^-] + 2[CO_3^{2-}] + [OH^-]$

When $[H^+] = [HCO_3^-]$, $[CO_3^{2-}]$ and $[OH^-]$ are sufficiently small, so taking that point:

pH = 5.4

- * Increase in atmospheric CO_2 results in acidification of waters. Ocean acidification is one of the side effect we are concerned with by CO_2 emission.
- 3. Describe the difference in the cell wall of the Gram positive [G(+)] and Gram negative [G(-)] bacteria.

(10 points)

Answer)

- G(-) bacteria have a thin peptidoglycan cell wall sandwiched between an inner cell membrane and an outer membrane containing lipopolysaccharide (LPS).
- G(+) bacteria have a thick peptidoglycan layer and do not have an outer membrane.
- 4. Classify the following bacterium species by carbon sources, energy sources, and growth in the presence/absence of O_2 .
 - Acidithiobacillus ferrooxidans
 - Escherichia coli
 - Nitrobacter vulgaris

(15 points)

Answer)

Acidithiobacillus ferrooxidans: uses CO_2 as carbon source, obtains energy using Fe^{2+} or inorganic sulfur (S^{2-} , HS^{-} , S^{0} , etc.) under aerobic conditions, but also found to be grown under anaerobic conditions obtaining energy using H_2 or inorganic sulfur, using Fe^{3+} as an electron acceptor.

 \rightarrow autotroph, chemotroph, facultative aerobe

Escherichia coli: uses organic compounds as carbon source, obtains energy using organic compound decomposition, grown anaerobically by fermentation but can switch into aerobic respiration

 \rightarrow heterotroph, chemotroph, faculatative anaerobe

Nitrobacter vulgaris: uses inorganic carbon as carbon source, obtains energy by converting nitrite (NO_2) into nitrate (NO_3) , uses O_2 as an only electron acceptor

 \rightarrow autotroph, chemotroph, obligate aerobe

5. Mathematically derive the steady state solutions (in the form of $C = f(C_0, k, \tau)$) for PFR and CSTR when a substance is degraded in the reactors by a chemical reaction described by 2nd order reaction rate. For an influent concentration of 10 mg/L and a second order reaction rate constant of 3 L/mg/d, compare the effluent concentrations of the steady state PFR and CSTR at a hydraulic retention time (HRT) range of 0 to 1 day.

Note: compare the effluent concentrations of PFR and CSTR by plotting the concentrations against HRT. In other words, x-axis: HRT, y-axis: effluent concentrations of PFR and CSTR.

(25 points)

Answer)

i) PFR, 2nd order reaction

Taking a thin plate with a thickness of Δx at a distance of x from the inlet as CV (same as the diagram drawn in the lecture note):

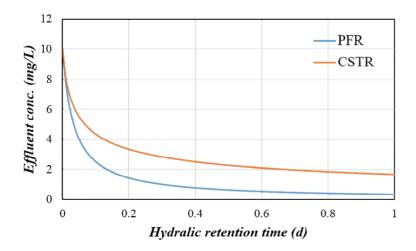
mass balance equation: $\Delta V \frac{\partial C}{\partial t} = QC - Q(C + \Delta C) - kC^2 \Delta V = 0$ (steady state)

 $0 = -v \cdot \frac{\Delta C}{\Delta x} - kC^2$

$$\Delta x \rightarrow 0: \quad 0 = -v \cdot \frac{dC}{dx} - kC^2$$
$$\int_{C_0}^{C_e} \frac{dC}{C^2} = -\frac{k}{v} \int_0^L dx$$
$$\frac{1}{C_0} - \frac{1}{C} = -\frac{k \cdot L}{v} = -k \cdot \tau$$
$$C = \frac{1}{1/C_0 + k\tau}$$

ii) CSTR, 2nd order reaction

Taking the whole reactor as CV:


mass balance equation: $V \frac{dC}{dt} = QC_0 - QC - kC^2 V = 0$ (steady state)

 $k\tau C^2 + C - C_0 = 0$

$$C{=}\frac{-1{+}\sqrt{1{+}4k\tau C_{\!0}}}{2k\tau}$$

iii) Comparing PFR and CSTR

Applying the solutions and the conditions given, following graph can be obtained.

PFR outperforms CSTR for 2^{nd} order reaction, which is the same conclusion as what we saw in the class for 1^{st} order reaction.

For 1^{st} order reaction, we saw that the substance removal efficiency $((1 - C_e/C_0) \times 100(\%))$ is not a function of C_0 , but for 2^{nd} order reaction, the removal efficiency is different for different C_0 . The greater the C_0 , the greater the removal efficiency we will get for any reactor types.

6. Read the following article discussing the ecology of *Vibrio cholerae* and briefly summarize the article. (in less than 0.5 page, strictly monitored for plagiarism).

Cottingham, K.L.; Chiavelli, D.A.; Taylor R. K. Environmental microbe and human pathogen: the ecology and microbiology of *Vibrio cholerae*. *Frontiers in Ecology and the Environment*. Vol. 1, No. 2, 80-86, 2003.

link:

http://onlinelibrary.wiley.com/doi/10.1890/1540-9295(2003)001%5B0080:EMAHPT%5D2.0.C O;2/abstract

(10 points)