Homework #2

(Problems in Currie Ch. 2 and 3)

2.5 Consider the two-dimensional velocity distribution defined as follows:

$$u = -\frac{x}{x^2 + y^2}$$
 $v = \frac{y}{x^2 + y^2}$

Determine the circulation for this flow field around the following contour by integrating around it counterclockwise:

$$-1 \le x \le +1$$
 $y = -1$
 $-1 \le y \le +1$ $x = +1$
 $-1 \le x \le +1$ $y = +1$
 $-1 \le y \le +1$ $x = -1$

2.6 A particular three-dimensional flow field has the following velocity components:

$$u = 9x^2 + 2y$$
 $v = 10x$ $w = -2yz^2$

- (a) Using the same contour as defined in Prob. 2.5 on the plane z = 5, determine the circulation for the given flow field.
- (b) Calculate the vorticity vector for the given flow field at any point (x, y) on the plane z = 5.
- (c) Using the value obtained in (b) for the velocity vector ω on the plane z = 5, evaluate the following integral:

$$\int_{A} \mathbf{\omega} \cdot \mathbf{n} \, dA$$

where A is the area of the rectangle defined in (a) and n is the unit normal to that area in the positive z direction. Compare the result obtained in (c) with that obtained in (a).

- 2.8 Calculate the vorticity at any point (R, θ) for each of the following two-dimensional flow fields:
 - (a) $u_R = 0, u_\theta = \omega R$.
 - **(b)** $u_R = 0, u_\theta = \Gamma/2\pi R.$

In the above, R and θ are cylindrical coordinates while ω and Γ are constants.

3.2 Show that, for an incompressible fluid, the following identity holds between the velocity vector **u** and the vorticity vector **ω**:

$$\boldsymbol{\nabla}\boldsymbol{\cdot}\left[(\boldsymbol{u}\boldsymbol{\cdot}\boldsymbol{\nabla})\boldsymbol{u}\right]=\frac{1}{2}\nabla^{2}(\boldsymbol{u}\boldsymbol{\cdot}\boldsymbol{u})-\boldsymbol{u}\boldsymbol{\cdot}(\nabla^{2}\boldsymbol{u})-\boldsymbol{\omega}\boldsymbol{\cdot}\boldsymbol{\omega}$$

3.3 In cylindrical coordinates, the velocity components for a uniform flow around a circular cylinder are

$$u_R = U\left(1 - \frac{a^2}{R^2}\right)\cos\theta$$
$$u_\theta = -U\left(1 + \frac{a^2}{R^2}\right)\sin\theta$$

Here U is the constant magnitude of the velocity approaching the cylinder and a is the radius of the cylinder. If compressible and viscous effects are negligible, determine the pressure $p(R, \theta)$ at any point in the fluid in the absence of any body forces. Take the pressure far from the cylinder to be constant and equal to p_0 .

Specialize the result obtained above to obtain an expression for the pressure $p(a,\theta)$ on the surface of the cylinder.