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Mean, measure of location or center

µ x = E[ X ]

Variance, measure of spread, or dispersion

x
2 = E[ (X  – x)

2] 

Coef. of Skewness, measure of asymmetry

x = E[ (X  – x)
3] /x

3
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Conventional descriptions of shape are

Coefficient of Variation,  CV:  /

Coefficients of skewness,  :   E[(X-µ)3]/3

Coefficients of kurtosis, k:    E[(X-µ)4]/4



Distribution Moments 

Uniform µ = (b+a)/2;  2 = (b-a)2/12,  0
fX(x) =  1/(b-a)    for   a < x < b

Exponential µ  = x+b; 2 b2;  2
fX(x) =  exp{ – (x – x)/b }/bx

Normal µ  ; 2 ;   0
fX(x) =  exp{ – 0.5(x – µ )2/2 }/ 22

Gumbel  x+0.5772/
21.645/2;  1.1396

FX(x) = exp{ – exp[ – (x - x) ] }  –  < x < 



Sample estimates are imprecise and 
their large bias depends upon
◦ Sample size
◦ Underlying distribution

Bounds on sample estimates
{if estimators in S uses (n-1) and in skew estimator uses n/[(n-1)(n-

2)] }

|CV|  ≤   n0.5

|CS|  ≤  n0.5

Bound on CV assumes observations must be positive.



Product-Moment Skew-Kurtosis estimators: n=10
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Samples drawn from a Gumbel distribution.



An alternative to product moments



L-moments can summarize data as do 
conventional moments. However, their 
estimators are linear combinations of the 
ordered observations.

Because L-moments avoid squaring and 
cubing the data, their estimators do not 
suffer from the severe bias problems 
encountered with product moments.



Let X(i|n) be ith largest obs. in sample of size 
n. 

Measure of Scale
expected difference between largest and 
smallest observations in a sample of size 2:

l2 =  (1/2)  E[ X(2|2) - X(1|2) ] 

Measure of Asymmetry
l3 = (1/3)  E[ X(3|3) - 2 X(2|3) +  X(1|3) ]

where l3 > 0 for positively skewed dists.



Measure of Kurtosis
l4 = (1/4) E[ X(4|4) – 3 X(3|4) – 3 X(2|4) + X(1|4) ]

For highly kurtotic distributions, l4 large.  
For the uniform distribution l4 = 0.

L-kurtosis l4 can be written 
l4= (1/4) {E[ X(4|4)– X(1|4) ] - 3 E[ X(3|4)–X(2|4) ]}



L-moment Coefficient of variation (L-CV):
2  l2/l1 l2/µ

L-moment coef. of skew (L-Skewness)
3 l3/l2

L-moment coef. of kurtosis (L-Kurtosis)
4 l4/l2

(Note: Hosking calls L-CV  instead of 2.)



Distribution L-Moments 

Uniform l2 = (b-a)/6; 3 0;4 0

Exponential l2 b/2; 3 1/3;4 1/6

Normal l2 /sqrt[];  

3 0;4 0.1226

Gumbel l2  ln(2); 

3 0.1699;4 0.1504



GEV:        F[x] = exp{ – [ 1 – (k/(x– x)]1/k }

l2 =  (1-2-k) G(1+k) / k

3 = 2 (1-3-k)/(1-2-k) - 3

4 = {1 - 5 4-k) + 10 3-k) - 6 2-k)} / (1-2-k)

Generalized Pareto (GP):

F[x] = 1–[1–(k/(x– x)]1/k

l2 = /[(1 + k)(2 + k)  

3 = (1 - k)/(3 + k)

4 =  (1 - k)(2 - k)/[(3 + k)(4 + k)]

(From Hosking, 1990)



An vehicle for computing L-moments. Actually 
PWMs were developed first, but now have been 

replaced in parameter estimation by L-moments.



PWMs are used to estimate L-moments. 

Define: F(X) = CDF for X

rth order PWM is: br = E{ X [F(X)]r }

Instead of taking expectation of X to a power to 
calculate variance or skew, PWMs are
expectation of X times powers of F(X).

For r = 0,  b0 is just the population mean E[X].



Estimation of PWMs: Because (r+1) br is 
expected value of largest observation in a 
sample of size (r+1),  can use ordered sample 
values X(i),  

X(1) ≤ .. .≤ X(n)

to compute sample estimator:
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More simply for r = 0, 1, 2, formulas are

  



bo  X 

b1 
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To show that (1+r) br = E{ X(r+1|r+1) }, start 
with
Pr{ X(r+1|r+1) ≤ x } = [ F(x) ]r+1

Probability density function for X(r+1|r+1) is:
fX(r+1|r+1) (x)  =  (r+1) [F(X)]r f(x)

Hence

E{X(r+1|r+1) } =  x { (r+1) [F(X)]r f(x) } dx

= (1+r) br



Can use relationships with PWMs to compute 
L-moments: its convenient.

l1 =  b0

l2 =  2 b1 - b0

l3 =  6 b2 - 6 b1 + b0

l4 =  20 b3 - 30 b2 + 12 b1 - b0



Name Denoted Definition

Product-Moment Ratios

Coef. of Variation CVx x/µx

Coef. of Skewness x E[ (X – x)
3] / x

3

Coef. of Kurtosis kx E[ (X – x)
4] / x

4

L-Moment Ratios
L-Coef. of Variation* L-CV 2 = l2/l1

L-Coef. of Skewness L-Skewness 3 = l3/l2

L-Coef. of Kurtosis L-Kurtosis 4= l4/l2

* Hosking and Wallis (1997) uses  instead of 2 to represent the L-CV ratio.



L-moments work well for selection of a family of 
distributions (lognormal, Gumbel, Pearson type 3 …) 

to describe different phenomena. 



 Used to choose among alternative 
distributions to describe floods,  water 
quality, wind speeds or rainfall depths at 
different locations.

 Plot of 3 versus 2 = l2/l1 when choosing 
among 2-parameter distributions

 Plot 4 versus 3 when choosing
among 3-parameter distributions. 



L-Moment Diagram
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Product-Moment Skew-Kurtosis estimators: n=10
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Samples drawn from a Gumbel distribution.



L-Moment Skew-Kurtosis estimators: n=10
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Product-Moment Skew-Kurtosis estimators: n=100
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L-Moment Skew-Kurtosis estimators: n=100
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 For small n, product-moment estimators 
have bounds that prevents representation 
of true moments.

 For large n, skew-kurtosis estimators are 
highly variable and so highly correlated that 
they do not represent true moments.

 While also variable, L-skew and L-kurtosis 
estimators are approximately unbiased so 
regional averages can represent true values. 



 Goodness-of-fit statistics
(such as probability plots) can show how 
well a member of each family fits a sample.  
This identifies most flexible family, not 
necessarily family from which samples were 
drawn.

 L-moment diagrams 
focus on character of sample statistics 
which describe the “parent” distribution for 
the phenomena of interest.


