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Problem Set 4 

1. Long Pipe                       10% 

This problem is from “Advanced Fluid Mechanics Problems” by A.H. Shapiro and A.A. Sonin. Water flows from 

a large reservoir through a very long pipe under constant head h. When the valve is slowly closed, the head h 

remains constant, but the volume flow rate is reduced. 

A. Make a drawing for the water flow and denote the necessary variables to be considered for this problem. 

B. Neglecting friction and compressibility of the water, determine the gage pressure just upstream of the valve at 

any instant during the closure period. 

C. Suppose the valve is a short, frictionless nozzle with variable exit area Ax(t). At t < 0, prior to valve actuation, a 

steady flow takes place with Ax = A where A is the cross-sectional area of the pipe. It is desired to program the 

valve closure such that the volume flow rate decreases linearly in time from its initial steady state value to zero 

in a period of τ. What relation shall be required for Ax(t)/A to be programmed to perform the above function? 

 

2. Mass Conservation                      10% 

This problem is from “Advanced Fluid Mechanics Problems” by A.H. Shapiro and A.A. Sonin. A long, flat plate 

of breadth L which is small compared with the length perpendicular to the sketch is hinged at the left side to a flat 

wall, and the gap between the plate and wall is filled with an incompressible liquid of density ρ. 

A. Draw the plate of breadth L which is small compared with the length perpendicular to the sketch hinged at the 

left side to a flat wall. 

B. If the plate is at a small angle θ(t) and is depressed at an angular rate ω(t) = -dθ/dt, obtain an expression for the 

average liquid speed u(x,t) in the x-direction at station x and time t. 

 

3. Gas Explosion                      10% 

This problem is from “Advanced Fluid Mechanics Problems” by A.H. Shapiro and A.A. Sonin. Consider a bubble 

of high pressure gas exploding in an incompressible liquid in a spherically symmetrical fashion. The gas is not 

soluble in the liquid, and the liquid does not evaporate into the gas. At any instant R is the radius of the bubble, 

dR/dt is the velocity of the interface, Pg is the gas pressure assumed uniform in the bubble, u is the liquid velocity 

at the radius r, and P1 is the liquid pressure at a great distance from the bubble. Do not consider gravity. The 

following questions pertain to the formulation of an analysis which will lead to the details of the pressure and 

velocity distributions and to the rate of bubble growth in the limit of inviscid liquid flow. 

A. Sketch the bubble of high pressure gas exploding in an incompressible liquid in this problem. 

B. Determine the liquid velocity u at the radius r. 

C. Obtain the equation describing the rate of growth of the bubble further introducing the surface tension at the 

gas-liquid interface. 

D. What additional information and/or assumptions would be necessary to establish the bubble radius R as a 

function of time? Explain how you would use this information. 

 

4. Pipe Flow                       10% 

This problem is from “Advanced Fluid Mechanics Problems” by A.H. Shapiro and A.A. Sonin. A pipe of area A1 

carries a gas at density ρ and velocity V1. A converging nozzle is mounted at the end of the pipe to increase the gas 

velocity as it emerges into the atmosphere. The flow in the nozzle is incompressible. 

A. Sketch the flow of gas in the pipe with a support 

B. Use the momentum theorem to derive the x and y components of force, in excess of those required to support 

weight, exerted by the nozzle on its support. There is clearly ambiguity in the problem as being stated, since 

the x component of the force on the support will depend on the compression force applied to the gasket, as well 

as on the fluid flow. Consider just the flow-induced force which will be exerted when the compression force on 

the gasket is zero. 

C. What gage pressure will the presence of the nozzle induce at the pipe where the area is A1? You may model the 

velocity at station (1) as being uniform and assume that the velocity is also uniform at (2). 

D. Apart from the assumption that conditions at (2) have attained uniformity, does the result in A depend in any 

way on the contour of the nozzle between (1) and (2)? 

E. What is the direction of the force if A2 < A1? What if A2 > A1? 

 

5. Liquid Emulsion                      10% 

This problem is from “Advanced Fluid Mechanics Problems” by A.H. Shapiro and A.A. Sonin. There is a liquid 

emulsion, or a finely-divided mixture of two liquids, of mean density ρ1 entering a reaction zone of a constant-area 

reactor with speed V1. The components of the emulsion react chemically, and leave the reaction zone as a liquid at 

the density ρ2. Pitot tubes are installed upstream of the reaction zone. Pressure inside a pitot tube is stagnated at P0 

= P + ρV
2
/2. The flow is inviscid, steady and one dimensional, the original emulsion is incompressible, and the 

liquid leaving the reaction zone is incompressible. Calculate the value of (P 0,1 − P 0,2)/( ρ1V1 
2
/2) in terms of the 

density ratio ρ2/ρ1. 
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6. Jet Pump                       10% 

This problem is from “Advanced Fluid Mechanics Problems” by A.H. Shapiro and A.A. Sonin. The device 

connected between compartments A and B is a jet pump. A jet pump is a simplified device which uses a small, 

very high-speed jet with relatively low volume flow rate to move fluid at much larger volume flow rates against a 

pressure differential ΔP. The pump consists of a contoured inlet section leading to a pipe segment of constant area 

A2. A small, fast jet of speed Vj and area Aj injects fluid, drawn from compartment A, at the entrance plane (1) of 

the pipe segment. Between (1) and (2), the jet, or the primary stream, and the secondary fluid flow which is drawn 

in from compartment A via the contoured inlet section mix in a viscous, turbulent fashion and eventually, at 

station (2), emerge as an essentially uniform-velocity stream. Assume that the flows are incompressible, that the 

flow from compartment A to station (1) is inviscid, and that, although viscous forces dominate the mixing process 

between (1) and (2), the shear force exerted on the walls between those stations is small. The pump operates in 

steady state. Neglect gravity. 

A. Derive an expression for ΔP as a function of the total volume flow rate Q from compartment A to compartment 

B given Aj, A2, ρ, and Vj. Assume Aj « A2 to simplify your expression. 

B. Sketch the relationship ΔP vs. Q (the “pump curve”) for positive ΔP and Q. Indicate the value of Q when ΔP = 

0 (the “short-circuit” volume flow rate). Show that for Aj « A2, the latter is large compared with the volume 

flow rate VjAj of the jet. 

C. Sketch the pressure distribution along the line a–b for the case when ΔP = 0 and for a case when ΔP > 0.  

D. Is your formulation in (a) valid when Q = 0, i.e. when the total flow rate for A to B is zero? Explain. What is 

the minimum volume flow rate Q for which your formulation is valid? 

 

7. Rocket Science                      10% 

This problem is from “Advanced Fluid Mechanics Problems” by A.H. Shapiro and A.A. Sonin. After its second 

booster has been fired, a space vehicle finds itself outside the earth’s atmosphere, moving vertically upward at a 

speed V0 against gravity g. Its total mass at that point is M0.At t = 0, the vehicle’s third stage is turned on and the 

rocket burns propellant at a mass rate mr kg/s, ejecting gas from the exit plane (area Ax) at speed Vx relative to the 

rocket. If the gravitational acceleration remains essentially constant at the vehicle during the rocket firing, 

determine the velocity V(t) of the vehicle after time t given M(t) the mass of the system at time t. Assume that 

although the pressure of the gas at the rocket exit plane is Px (the rocket exhaust is supersonic, and hence the 

pressure at the exit is not balanced with the zero pressure of space), the effect of the finite exit plane pressure on 

the thrust is negligible. 

 

8. Lawn Sprinkler                      10% 

This problem is from “Advanced Fluid Mechanics Problems” by A.H. Shapiro and A.A. Sonin. There is a lawn 

sprinkler with two horizontal arms of radial length R, at the termination of which are nozzles with exit area A2 

pointing in a direction which is at an angle θ relative to the tangent of a circumferential line. The sprinkler is free 

to rotate, but the bearing on which it is mounted exerts a torque kω in the direction opposing the rotation, ω being 

the angular rate of rotation. A constant volume flow rate Q passes through the sprinkler, the flow being 

incompressible at density ρ. 

A. Sketch the lawn sprinkler along with all the parameters involved. 

B. Find an expression for the steady-state angular velocity ω of sprinkler in terms of the given quantities R, A2, θ, 

Q, ρ, and k. 

C. In the steady state, what is the velocity vector of the fluid emerging from the nozzles, as seen by an observer in 

the non-rotating reference frame? What is the fluid velocity at the nozzle vent if the bearing is frictionless, viz. 

k = 0? 

D. If the pipe area at station 1 near the bearing is A1, and the flow from that point to the nozzles is inviscid, what 

gage pressure is required at station 1 to sustain the flow rate in this steady state?  

 

9. Sink Flow                       10% 

This problem is from “Advanced Fluid Mechanics Problems” by A.H. Shapiro and A.A. Sonin. A steady sink flow 

is set up by injecting water tangentially through a narrow channel near the periphery and letting it drain through a 

hole at the center. The vessel has a radius R. At the point of injection, the water has a velocity V and depth h0; the 

width of the injection channel b is small compared with R. Consider the region of the flow act too close to the 

drain, and assume that everywhere in the region (i) the flow is essentially incompressible and inviscid, (ii) the 

radial velocity component |vr| is small compared with the circumferential velocity component vθ, and at the 

periphery. 

A. Applying the angular momentum theorem to a control volume for the water between r and R, calculate vθ. 

B. Show that the assumption |vr|«vθ is satisfied if b « R. 

 

10. Circular Tank                      10% 

This problem is from “Advanced Fluid Mechanics Problems” by A.H. Shapiro and A.A. Sonin. At t = 0, a circular 

tank of radius R contains water at rest, with a depth h. Between 0 < t < τ, a water hose is sprayed onto the surface 

of the water in the tank at a volume flow rate Q and an exit velocity Vj. The jet impacts tangentially on the water at 

a radius Rj, with an angle θ relative to the horizontal. After the time τ, the hose is turned off. Eventually, all the 

water in tank will end up rotating like a solid body. Derive an expression for the final angular rate of rotation Ω of 

the water, assuming shear forces between the water and the walls of the tank are negligible. 


