SET Prohlem Session 2

Problem Statement 1

- Steam contained within a piston-cylinder assembly undergoes an expansion from state 1 ,where the specific internal energy is $\boldsymbol{u}_{\mathbf{1}}=\mathbf{2 7 0 9 . 9 \mathbf { k J } / \mathbf { k g } \text { , to }}$ state 2 , where $\boldsymbol{u}_{2}=\mathbf{2 6 5 9 . 6} \mathbf{k J} / \mathbf{k g}$. During the process, there is a heat transfer to the system with a magnitude of 80 kJ . Also, a paddle wheel transfers energy to the steam by work in the amount of 18.5 kJ . There is no significant change in the kinetic or potential energy of the steam. Determine the energy transfer by work from the steam to the piston during the process in kJ .

Fiantre

Solution

- Energy balance for closed system:
- (Change in the amount energy contained within a system during some time interval)=(Net amount of energy transferred in across the system boundary by heat transfer during the time interval)-(Net amount of energy transferred out across the system boundary by work during the time interval)

Solution

- Heat added to the system: 80 kJ
- Change in internal energy $=$ $\left((2659.6-2709.9) \frac{\mathrm{kJ}}{\mathrm{Kg}}\right) * 5 \mathrm{Kg}=-251.5 \mathrm{~kJ}$
- Work done on the system $=\mathbf{- 1 8 . 5} \mathbf{k J}$
- Work done by the steam = ?
- $-251.5=80-(-18.5+W)$
- $W=98.5+251.5=350 k J$

Problem Statement 2

- A gas expands in a piston-cylinder assembly from $\boldsymbol{p}_{\mathbf{1}}=\mathbf{8} \mathbf{b a r}, \boldsymbol{V}_{\mathbf{1}}=\mathbf{0 . 0 2} \mathrm{m}^{\mathbf{3}}$ to $p_{2}=2$ bar in a process during which the relation between the pressure and volume is $\boldsymbol{p} V^{1.2}=$ Constant. The mass of the gas is 0.25 Kg . If the specific internal energy of the gas decreases by $55 \mathrm{~kJ} / \mathrm{kg}$ during the process, determine the heat transfer, in KJ. Kinetic and potential energy effects are negligible.

Solution

- $p_{1} V^{1.2}{ }_{1}=p_{2} V^{1.2}{ }_{2}$,
- $8 * 0.02^{1.2}=2 * V^{1.2}{ }_{2}$
- $V_{2}=0.063 \mathrm{~m}^{3}$
- Work done by expanding steam $=\int_{V_{1}}^{V_{2}} p d V$
- $\int_{0.02}^{0.063} \frac{K}{V^{1.2}} d V=\frac{-K}{0.2} *\left(\frac{1}{0.063^{0.2}}-\frac{1}{0.02^{0.2}}\right)$

○ $K * 2.24=W, W=(2.24 * 7316.88)=16.3 k J$

- $K=8 * 10^{5} * 0.02^{1.2}=7316.88$
- (1 bar=10^5 pascal)

Solution

- $-55 * 0.25=Q-16.3$
- $Q=2.55 \mathrm{~kJ}$

