SET Problem Session 2

Problem Statement 1

• Steam contained within a piston-cylinder assembly undergoes an **expansion** from state 1, where the specific internal energy is $u_1 = 2709.9kJ/kg$, to state 2, where $u_2 = 2659.6kJ/kg$. During the process, there is a **heat transfer to the system** with a magnitude of **80 kJ**. Also, a paddle wheel transfers **energy to the steam by work** in the amount of **18.5 kJ**. There is **no significant** change in the **kinetic or potential energy** of the steam. Determine the energy **transfer by work from the steam to the piston** during the process in kJ.

• Energy balance for closed system:

 (Change in the amount energy contained within a system during some time interval)=(Net amount of energy transferred in across the system boundary by heat transfer during the time interval)-(Net amount of energy transferred out across the system boundary by work during the time interval)

- Heat added to the system: 80 kJ
 Change in internal energy =

 ((2659.6 2709.9) ^{kJ}/_{Kg}) * 5Kg = -251.5kJ

 Work done on the system = -18.5 kJ
 Work done by the steam = ?
- $\circ -251.5 = 80 (-18.5 + W)$
- W = 98.5 + 251.5 = 350 kJ

Problem Statement 2

• A gas expands in a piston-cylinder assembly from $p_1 = 8 bar$, $V_1 = 0.02 m^3$ to $p_2 = 2 bar$ in a process during which the relation between the pressure and volume is $pV^{1.2} = Constant$. The mass of the gas is 0.25 Kg. If the specific internal energy of the gas decreases by 55 kJ/kg during the process, determine the heat transfer, in kJ. Kinetic and potential energy effects are negligible.

p₁V^{1.2}₁ = p₂V^{1.2}₂,
8 * 0.02^{1.2} = 2 * V^{1.2}₂
V₂ = 0.063 m³

• Work done by expanding steam = $\int_{V_1}^{V_2} p dV$

• $\int_{0.02}^{0.063} \frac{K}{V^{1.2}} dV = \frac{-K}{0.2} * \left(\frac{1}{0.063^{0.2}} - \frac{1}{0.02^{0.2}}\right)$ • K * 2.24 = W, W = (2.24 * 7316.88) = 16.3 kJ• $K = 8 * 10^5 * 0.02^{1.2} = 7316.88$ • (1 bar=10^5 pascal)

o −55 * 0.25 = Q − 16.3 o Q = 2.55 kJ