Statement

Derive the relation $c_p = -T(\partial^2 g/\partial T^2)_p$.

Solution

consider h(T,p), s(T,p)

```
dh=(\delta h/\delta T)_p dT + (\delta h/\delta p)_T dp

dh=C_p dT + +(\delta h/\delta p)_T dp

Forming the differential of s(T,p)

ds=(\delta s/\delta T)_p dT + (\delta s/\delta p)_T dp

Using equation dh= Tds+vdp

C_p dT + +(\delta h/\delta p)_T dp = T[(\delta s/\delta T)_p dT + (\delta s/\delta p)_T dp] + vdp

[C_p - T(\delta s/\delta T)_p)]dT = [(\delta s/\delta p)_T + v - (\delta h/\delta p)]dp
```

Consider t, P are independent ,fixed P and vary T, so $dP=0,dT\neq 0$ $(C_p-T[(\delta s/\delta T)_p)dT=0$ $C_p=T(\delta s/\delta T)_p$ $-s=(\delta g/\delta T)_p$ $-(\delta s/\delta T)_p=(\delta g^2/\delta T^2)_p$ $Cp/T=-(\delta g^2/\delta T^2)_p$ $Cp=-T(\delta g^2/\delta T^2)_p$