## Engineering Economic Analysis Spring 2019

## **Problem set 1 - Solution**

- **1.** *Text 1.7* 
  - 1<sup>st</sup> Question: He will set a price of 25 and rent 50 apartments.
  - 2<sup>nd</sup> Question: He will set a price of 30 and rent 40 apartments.

*Text 2.6* 

 $(p_1 + t)x_1 + (p_2 - s)x_2 = m - u$ 

*Text* 4.5

1<sup>st</sup> Question: Quasi-linear preferences.2<sup>nd</sup> Question: Yes.

2. (A) E, who is willing to pay \$10 for an apartment, will sublet to F, who is willing to pay \$18.

(B) \$18

- (C) A, B, C, D, F.
- (D) It's the same.

**3.** (A)



- (B)  $10x_1 + 20x_2 = 1200$
- (C)  $x_1 = x_2$
- (D) (40, 40)

(E) 400 minutes for the first examination, and 800 minutes for the second examination.

**4.** - Marshallian demand function

$$x_{1}^{*} = \begin{cases} \frac{m}{p_{1}} & \text{if } p_{1} < p_{2} \\ 0 \text{ or } \frac{m}{p_{1}} & \text{if } p_{1} = p_{2} \text{ , } x_{2}^{*} = \begin{cases} 0 & \text{if } p_{1} < p_{2} \\ 0 \text{ or } \frac{m}{p_{2}} & \text{if } p_{1} = p_{2} \\ 0 & \text{if } p_{1} > p_{2} \end{cases}$$

- Indirect utility function

$$v(p_1, p_2, m) = \frac{m}{\min\{p_1, p_2\}}$$

- Expenditure function

$$e(p_1, p_2, u) = \min\{p_1, p_2\}u$$

5. (A) By Roy's identity, 
$$x_j^* = -\frac{\partial v / \partial p_j}{\partial v / \partial m}$$
.

Then, we can calculate the demand functions as  $x_1^* = x_2^* = \frac{m}{p_1 + p_2}$ .

- (B)  $e(p_1, p_2, u) = (p_1 + p_2)u$
- (C)  $u(x_1, x_2) = \min\{x_1, x_2\}$

**6.** (A) Quasi-linear preferences

- (B) Less than u(1)
- (C)  $v(p_1, p_2, m) = \max\{u(1) p_1 + m, m\}$

7.

Write the Lagrangian

$$L(\mathbf{x},\lambda) = \frac{3}{2}\ln x_1 + \ln x_2 - \lambda(3x_1 + 4x_2 - 100)$$

Now, equating the derivatives with respect to  $x_1, x_2$ , and  $\lambda$  to zero, we get three equations in three unknowns

$$\frac{3}{2x_1} = 3\lambda$$
$$\frac{1}{x_2} = 4\lambda$$
$$3x_1 + 4x_2 = 100$$

Solving these equations, we get  $(x_1^*, x_2^*) = (20, 10)$ .





(B) The slope of a budget line is  $-p_1 / p_2$ . If the budget line is steeper than 2,  $x_1 = 0$ . Hence the condition is  $p_1 / p_2 > 2$ 

(C) If the budget line is flatter than 1/2,  $x_2 = 0$ , so the condition is  $p_1 / p_2 < 1/2$ 

(D) If the optimum is unique and neither  $x_1$  nor  $x_2$  is zero, it must occur where  $x_2 - 2x_1 = x_1 - 2x_2$ . This implies that  $x_1 = x_2$ , and it means  $x_1 / x_2 = 1$ . Value tax:  $p_1 \rightarrow p_1(1+t)$ 

(A) The problem can be formulated as  $\begin{array}{l}
\max \\
s.t. \\
p_1(1+t)x_1 + x_2 = m
\end{array}$ 

It can be rewritten as  $\max \ln x_1 + (m - p_1(1+t)x_1)$ 

From the first order condition,

$$\frac{\partial U}{\partial x_1} = \frac{1}{x_1} - p_1 \left( 1 + t \right) = 0, \quad \therefore x_1^* = \frac{1}{p_1 \left( 1 + t \right)}, x_2^* = m - 1$$

Note that when  $m \le 1, x_2^* = 0$ .

Therefore,

$$(x_1^*, x_2^*) = \begin{cases} \left(\frac{1}{p_1(1+t)}, m-1\right) \text{ if } m > 1\\ \left(\frac{m}{p_1(1+t)}, 0\right) & \text{ if } m \le 1 \end{cases}$$

(B) Since m > 1, indirect utility function can be written as  $v(\tilde{p}, m) = \ln\left(\frac{1}{p_1(1+t)}\right) + m - 1$ .

- 1<sup>st</sup> policy:  $t \to t - \alpha$ , then the indirect utility  $v^1(\tilde{p}, m) = \ln\left(\frac{1}{p_1(1+t-\alpha)}\right) + m-1$ .

- 2<sup>nd</sup> policy: Tax revenue 
$$R = t \times p_1 \times x_1^* = t \times p_1 \times \frac{1}{p_1(1+t)} = \frac{t}{1+t} = S$$

So, the indirect utility function 
$$v^2(\tilde{p},m) = \ln\left(\frac{1}{p_1(1+t)}\right) + m - 1 + \frac{t}{t+1}$$
.

 $v^1$  should be bigger than  $v^2$ , if the consumer prefer the first policy.

$$\therefore \ln\left(\frac{1}{p_1(1+t-\alpha)}\right) > \frac{t}{1+t} + \ln\left(\frac{1}{p_1(1+t)}\right) \Leftrightarrow \ln\left(\frac{1+t}{1+t-\alpha}\right) > \frac{t}{1+t} \Leftrightarrow \alpha > (1+t)\left(1-e^{-\frac{t}{1+t}}\right).$$