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1. Text 1.7 

- 1st Question: He will set a price of 25 and rent 50 apartments.  

- 2nd Question: He will set a price of 30 and rent 40 apartments. 

Text 2.6 

1 1 2 2( ) ( )p t x p s x m u+ + − = −   

Text 4.5 

1st Question: Quasi-linear preferences.  

2nd Question: Yes. 

 

2.  (A) E, who is willing to pay $10 for an apartment, will sublet to F, who is willing to pay $18. 

(B) $18 

(C) A, B, C, D, F. 

(D) It’s the same. 

 

3. (A)  



(B) 1 210 20 1200x x+ =   

(C) 1 2x x=   

(D) (40, 40) 

(E) 400 minutes for the first examination, and 800 minutes for the second examination. 

 

4.  - Marshallian demand function  
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- Indirect utility function 
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- Expenditure function  

( ) { }1 2 1 2, , min ,e p p u p p u=  

 

5. (A) By Roy’s identity, * /
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Then, we can calculate the demand functions as * *
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(B) 1 2 1 2( , , ) ( )e p p u p p u= +   

(C) 1 2 1 2( , ) min{ , }u x x x x=   

 

6. (A) Quasi-linear preferences 

(B) Less than ( )1u  

(C) 1 2 1( , , ) max{ (1) , }v p p m u p m m= − +   

 



7. 

Write the Lagrangian   

1 2 1 2
3( , ) ln ln (3 4 100)
2

L x x x xλ λ= + − + −x  

Now, equating the derivatives with respect to 1 2,x x , and λ to zero, we get three equations in three 

unknowns  
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Solving these equations, we get ( ) ( )* *
1 2, 20,10x x = .  

8.  (A)  

  
(B) The slope of a budget line is 1 2/p p− . If the budget line is steeper than 2, 1 0x = . Hence the 

condition is   1 2/ 2p p >  

(C) If the budget line is flatter than 1/2, 2 0x = , so the condition is 1 2/ 1/ 2p p <  

(D) If the optimum is unique and neither 1x  nor 2x  is zero, it must occur where 2 1 1 22 2x x x x− = − . 

This implies that 1 2x x= , and it means 1 2/ 1x x = .  

 

  



9. 

Value tax: ( )1 1 1p p t→ +  

(A)  The problem can be formulated as 
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It can be rewritten as ( )( )1 1 1max ln 1x m p t x+ − +  

From the first order condition, 
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Note that when *
21, 0m x≤ = . 

Therefore,  
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(B) Since 1m > , indirect utility function can be written as ( ) ( )1
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- 1st policy: t t α→ − , then the indirect utility ( ) ( )
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- 2nd policy: Tax revenue 
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So, the indirect utility function ( ) ( )
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 1v should be bigger than 2v , if the consumer prefer the first policy.  

 
( ) ( ) ( ) 1

1 1

1 1 1ln ln ln 1 1
1 1 1 1 1

t
tt t t t e

p t t p t t t
α

α α
−
+

     + ∴ > + ⇔ > ⇔ > + −           + − + + + − +      
. 


