Engineering Economic Analysis

Spring 2019

Problem set 1 - Solution

1. Text 1.7

- $1^{\text {st }}$ Question: He will set a price of 25 and rent 50 apartments.
$-2^{\text {nd }}$ Question: He will set a price of 30 and rent 40 apartments.
Text 2.6
$\left(p_{1}+t\right) x_{1}+\left(p_{2}-s\right) x_{2}=m-u$

Text 4.5
$1^{\text {st }}$ Question: Quasi-linear preferences.
$2^{\text {nd }}$ Question: Yes.
2. (A) E, who is willing to pay $\$ 10$ for an apartment, will sublet to F, who is willing to pay $\$ 18$.
(B) $\$ 18$
(C) A, B, C, D, F.
(D) It's the same.
3. (A)

(B) $10 x_{1}+20 x_{2}=1200$
(C) $x_{1}=x_{2}$
(D) $(40,40)$
(E) 400 minutes for the first examination, and 800 minutes for the second examination.
4. - Marshallian demand function

$$
x_{1}^{*}=\left\{\begin{array}{ll}
\frac{m}{p_{1}} & \text { if } p_{1}<p_{2} \\
0 \text { or } \frac{m}{p_{1}} & \text { if } p_{1}=p_{2} \\
0 & \text { if } p_{1}>p_{2}
\end{array}, x_{2}^{*}= \begin{cases}0 & \text { if } p_{1}<p_{2} \\
0 \text { or } \frac{m}{p_{2}} & \text { if } p_{1}=p_{2} \\
\frac{m}{p_{2}} & \text { if } p_{1}>p_{2}\end{cases}\right.
$$

- Indirect utility function

$$
v\left(p_{1}, p_{2}, m\right)=\frac{m}{\min \left\{p_{1}, p_{2}\right\}}
$$

- Expenditure function

$$
e\left(p_{1}, p_{2}, u\right)=\min \left\{p_{1}, p_{2}\right\} u
$$

5. (A) By Roy's identity, $x_{j}^{*}=-\frac{\partial v / \partial p_{j}}{\partial v / \partial m}$.

Then, we can calculate the demand functions as $x_{1}^{*}=x_{2}^{*}=\frac{m}{p_{1}+p_{2}}$.
(B) $e\left(p_{1}, p_{2}, u\right)=\left(p_{1}+p_{2}\right) u$
(C) $u\left(x_{1}, x_{2}\right)=\min \left\{x_{1}, x_{2}\right\}$
6. (A) Quasi-linear preferences
(B) Less than $u(1)$
(C) $v\left(p_{1}, p_{2}, m\right)=\max \left\{u(1)-p_{1}+m, m\right\}$
7.

Write the Lagrangian

$$
L(\mathbf{x}, \lambda)=\frac{3}{2} \ln x_{1}+\ln x_{2}-\lambda\left(3 x_{1}+4 x_{2}-100\right)
$$

Now, equating the derivatives with respect to x_{1}, x_{2}, and λ to zero, we get three equations in three unknowns

$$
\begin{aligned}
& \frac{3}{2 x_{1}}=3 \lambda \\
& \frac{1}{x_{2}}=4 \lambda \\
& 3 x_{1}+4 x_{2}=100
\end{aligned}
$$

Solving these equations, we get $\left(x_{1}^{*}, x_{2}^{*}\right)=(20,10)$.
8. (A)

(B) The slope of a budget line is $-p_{1} / p_{2}$. If the budget line is steeper than $2, x_{1}=0$. Hence the condition is $p_{1} / p_{2}>2$
(C) If the budget line is flatter than $1 / 2, x_{2}=0$, so the condition is $p_{1} / p_{2}<1 / 2$
(D) If the optimum is unique and neither x_{1} nor x_{2} is zero, it must occur where $x_{2}-2 x_{1}=x_{1}-2 x_{2}$.

This implies that $x_{1}=x_{2}$, and it means $x_{1} / x_{2}=1$.
9.

Value tax: $p_{1} \rightarrow p_{1}(1+t)$
(A) The problem can be formulated as $\begin{array}{ll}\max & \ln x_{1}+x_{2} \\ \text { s.t. } & p_{1}(1+t) x_{1}+x_{2}=m\end{array}$ It can be rewritten as max $\ln x_{1}+\left(m-p_{1}(1+t) x_{1}\right)$

From the first order condition,

$$
\frac{\partial U}{\partial x_{1}}=\frac{1}{x_{1}}-p_{1}(1+t)=0, \quad \therefore x_{1}^{*}=\frac{1}{p_{1}(1+t)}, x_{2}^{*}=m-1
$$

Note that when $m \leq 1, x_{2}^{*}=0$.
Therefore,

$$
\left(x_{1}^{*}, x_{2}^{*}\right)= \begin{cases}\left(\frac{1}{p_{1}(1+t)}, m-1\right) & \text { if } m>1 \\ \left(\frac{m}{p_{1}(1+t)}, 0\right) & \text { if } m \leq 1\end{cases}
$$

(B) Since $m>1$, indirect utility function can be written as $v(\tilde{p}, m)=\ln \left(\frac{1}{p_{1}(1+t)}\right)+m-1$.

- $\quad 1^{\text {st }}$ policy: $t \rightarrow t-\alpha$, then the indirect utility $v^{1}(\tilde{p}, m)=\ln \left(\frac{1}{p_{1}(1+t-\alpha)}\right)+m-1$.
- $\quad 2^{\text {nd }}$ policy: Tax revenue $R=t \times p_{1} \times x_{1}^{*}=t \times p_{1} \times \frac{1}{p_{1}(1+t)}=\frac{t}{1+t}=S$

So, the indirect utility function $v^{2}(\tilde{p}, m)=\ln \left(\frac{1}{p_{1}(1+t)}\right)+m-1+\frac{t}{t+1}$.
v^{1} should be bigger than v^{2}, if the consumer prefer the first policy.

$$
\therefore \ln \left(\frac{1}{p_{1}(1+t-\alpha)}\right)>\frac{t}{1+t}+\ln \left(\frac{1}{p_{1}(1+t)}\right) \Leftrightarrow \ln \left(\frac{1+t}{1+t-\alpha}\right)>\frac{t}{1+t} \Leftrightarrow \alpha>(1+t)\left(1-e^{-\frac{t}{1+t}}\right)
$$

