Problem Statement

- A tank having a volume of 0.85 cubic meter initially contains water as a two phase liquid vapor mixture at 260 degree celsius and a quality of 0.7. Saturated water vapor at 260 degree celsius is slowly withdrawn through a pressure regulating valve at the top of the tank as energy is transferred by heat to maintain the pressure constant in the tank. This continues until the tank is filled with saturated vapor at $\mathbf{2 6 0}$ degree celsius. Determine the amount of heat transfer in kJ. Neglect all kinetic and potential energy

Solution

- $\frac{d E}{d t}=\dot{Q}+\dot{m}_{1} h_{1}-\dot{m}_{2} h_{2}$
- Since nothing is coming inside the tank thus $\dot{m}_{1} h_{1}=0$
- Therefore $\frac{d E}{d t}=\dot{Q}-\dot{m}_{2} h_{2}$

Solution

- $\frac{d E}{d t}=\dot{Q}-\dot{m}_{2} h_{2}$
- $\frac{d m_{c v}}{d t}=-\dot{m}_{2}$
- $\frac{d E}{d t}=\dot{Q}+\frac{d m_{c v}}{d t} h_{2}$
- $\Delta E=\Delta Q+h_{2} \Delta m_{c v} \ldots 1$
- Initial mass inside the tank is calculated as since the vapor and water are in saturated state so from the steam table at 260 degree celsius.

Solution

- $v_{m}=v_{l} * 0.3+\left(v_{g} * 0.7\right)$
- $=\left(0.001276^{*} 0.3\right)+\left(0.7^{*} 0.04276\right)=0.029906$ m^3/kg
- Thus $0.85 / 0.029906$ gives 28.422 kg
- Similarly mass when it is pure steam inside is $0.85 / 0.04276=20.14 \mathrm{~kg}$
- h_{2} is saturated steam enthalpy at 260 degree celsius, $2796.6 \mathrm{~kJ} / \mathrm{kg}$

Solution

- ΔE is calculated from specific internal energy and the initial and final mass of the system
- Specific internal energy (initially): $\left(0.3^{*} 1128.4\right)+\left(0.7^{*} 2599\right)=2157.8 \mathrm{~kJ} / \mathrm{kg}$
- Specific internal energy (after)=2599 kJ/kg
- Thus plugging everything in 1
- We get Q=14.16 kJ

