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The discretization of the 1-D Euler equation is considered to compute the following five 
inviscid compressible flows. 

 
Case1) Modified Sod's shock-tube problem:  

(ρ, u, p)L = (1.0, 0.75, 1.0)  if  x ≤ 0.3;      (ρ, u, p)R = (0.125, 0.0, 0.1)  if  x > 0.3.  
100 cells, CFL=0.9 at t=0.2  

 
Case2) Supersonic expansion (123 problem):  

(ρ, u, ρE)L = (1.0, -2.0, 3.0)  if  x ≤ 0.5;     (ρ, u, ρE)R = (1.0, 2.0, 3.0)  if  x > 0.5.  
100 cells, CFL=0.5 at t=0.15  

 
Case3) Blast wave problem:  

(ρ, u, p)L = (1.0, 0.0, 1000.0)  if  x ≤ 0.5;    (ρ, u, p)R = (1.0, 0.0, 0.01)  if  x > 0.5.  
100 cells, CFL=0.6 at t=0.012   

 
Case4) Test for two strong shock waves traveling towards each other:  

(ρ, u, p)L = (5.99924, 19.5975, 460.894)  if  x ≤ 0.4;  
(ρ, u, p)R = (5.99242, -6.19633, 46.0950)  if  x > 0.4.  
100 cells, CFL=0.8 at t=0.035  

 
Case5) Test for slowly-moving contact discontinuities:  

(ρ, u, p)L = (1.0, -19.59745, 1000.0)  if  x ≤ 0.8;  
(ρ, u, p)R = (1.0, -19.59745, 0.01)  if  x > 0.8.  
100 cells, CFL=0.6 at t=0.012   

 
The numerical methods to be tested are: 

1) First-order flux functions 
•  FVS: van Leer’s FVS [2] 
•  FDS: Roe’s FDS [3], RoeM2 [4] 
•  Hybrid: AUSM+ [5], AUSMPW+ [6] 

 
2) High-order interpolation version of 1)  

•  TVD methods using flux limiters [7] 
•  MUSCL approach [8] 
•  WENO [9] 
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* Runge-Kutta time integration is preferred for methods 2).  
   The 3rd-order TVD R-K method for ( )tq L q  is given by 
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For each problem,  

i) Plot density, pressure, velocity and total energy at the given time.  
ii) Discuss accuracy, efficiency and robustness of each method.  
iii) CFL number and mesh points may be changed to see their effects.  
iv) Each computed result can be compared with fine grid computations and/or 

analytical solutions. 
 
If you have enquiries or need help with your term project, please send an email to TA.  
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