# Term Project: Problem Set C

Instructor: Prof. Chongam Kim TA: Hyunji Kim Due: June 10<sup>th</sup> Room: 301-1256

- Governing equation: Two-dimensional Euler equation
- Basic discretization: Finite volume method
- Flux function: Roe's FDS, RoeM2, AUSM+, AUSMPW+
- High-order interpolation: MLP3 (or MLP5) and choose one more between [MUSCL with slope limiter / WENO]
- Time integration method:
  - Steady problem: Choose at least one among [4th- or 5th-order Runge-Kutta method with local time stepping / LU-SGS / AF-ADI]
  - Unsteady problem: Choose at least one between [3rd-order accurate TVD Runge-Kutta method / dual time stepping wth LU-SGS or AF-ADI]
- Pick one for steady and one for unsteady computations. Compare efficiency (total and modular computational cost), accuracy and robustness between flux functions.

# 1. Steady problem

# (1) Transonic flow over NACA0012 airfoil

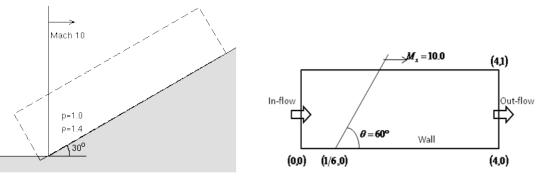
- Computational mesh (O-type) will be given on the website.
- Free stream condition: M = 0.8,  $\alpha = 1.25^{\circ}$
- Plot: convergence history; surface pressure distribution; aerodynamic coefficients (*Cl*, *Cd*) values

## (2) Supersonic flow over a blunt body

- Geometry & mesh: mesh type 1 (semi-circle), mesh type 2 (quater-circle)
- Free stream condition: M = 8.0,  $\alpha = 0.0^{\circ}$
- Plot: convergence history; pressure (or density) contour; pressure (or density) along the center line

## 2. Unsteady problem

#### (1) Explosion test


- Grid system:  $[-1,1] \times [-1,1]$  with  $100 \times 100$  cells
- Initial condition:  $(\rho, u, v, p) = \begin{cases} (1.0, 0.0, 0.0, 1.0) & R < 0.4 \\ (0.125, 0.0, 0.0, 0.1) & \text{else} \end{cases}$

where R is the radius from the center

- Plot: density (or pressure) contour; distribution of density (or pressure) along the line  $y = 0, x \ge 0$  at t = 0.25

## (2) Double Mach reflection

- Grid system:  $[0,4] \times [0,1]$  with  $480 \times 120$  and  $960 \times 240$  cells
- Initial configuration:



- (a) Physical configuration
- (b) Computational domain

- Plot: density contour