
16  Molecular interactions 

16A  Electric properties of molecules 
 

Answers to discussion questions 
 
16A.2 When the applied field changes direction slowly, the permanent dipole moment has time to reorientate—
the whole molecule rotates into a new direction—and follows the field. However, when the frequency of the 
field is high, a molecule cannot change direction fast enough to follow the change in direction of the applied 
field and the dipole moment then makes no contribution to the polarization of the sample. Because a molecule 
takes about 1 ps to turn through about 1 radian in a fluid, the loss of this contribution to the polarization occurs 
when measurements are made at frequencies greater than about 1011 Hz (in the microwave region). We say that 
the orientation polarization, the polarization arising from the permanent dipole moments, is lost at such high 
frequencies 
 
The next contribution to the polarization to be lost as the frequency is raised is the distortion polarization , the 
polarization that arises from the distortion of the positions of the nuclei by the applied field. The molecule is 
bent and stretched by the applied field, and the molecular dipole moment changes accordingly. The time taken 
for a molecule to bend is approximately the inverse of the molecular vibrational frequency, so the distortion 
polarization disappears when the frequency of the radiation is increased through the infrared. The disappearance 
of polarization occurs in stages: as shown in Justification 16A.3, each successive stage occurs as the incident 
frequency rises above the frequency of a particular mode of vibration. 
 
At even higher frequencies, in the visible region, only the electrons are mobile enough to respond to the rapidly 
changing direction of the applied field. The polarization that remains is now due entirely to the distortion of the 
electron distribution, and the surviving contribution to the molecular polarizability is called the electronic 
polarizability . 
 
 
 

Solutions to exercises 
 
16A.1(b) A molecule with a centre of symmetry may not be polar but molecules belonging to the groups Cn, 
Cnv, and Cs may be polar (Topic 11A). SO3, which has a trigonal planar structure (D3h), and XeF4, which is 

square planar (D4h), cannot be polar. 4SF  (see-saw, C2v) may be polar. 

 
16A.2(b) 2 2 1/2

res 1 2 1 2( 2 cos ) [16A.3a]µ µ µ µ µ θ= + +  

         2 2 1/2[(2.5) (0.50) (2) (2.5) (0.50) (cos120 )] D 2.3 D= + + × × × =  

 
16A.3(b) 2 3 2 2 3 3 34 (0) 2 2      where          and     i i

i

Q e e e r x x yµ = = − − = = +∑ r r r ri i j  

 2 162 pmx = +  

 ( ) ( )3 3 cos30 143 pm 0 866 124 pmx r= ° = + × . =  

 ( ) ( )3 3 sin 30 143 pm 0 500 71.5 pmy r= ° = × . =  

The components of the vector sum are the sums of the components. 

 ( ) ( ){ } ( )2 32 2 2 162 124  pm 572 nmx ex ex e eµ = − − = − × + = − ×  

 ( ) ( )32 2 71.5 pm 143 pmy ey e eµ = − = − × = − ×  
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16A.4(b) Polarizability α, dipole moment μ, and molar polarization Pm are related by 
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In order to solve for α, it is first necessary to obtain µ from the temperature variation of Pm. 
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and hence 
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16A.6(b) 1 2 r A
r r

r 0

1
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Therefore, 
 

 
( ) ( )
( ) ( )

2
0 r

2
A r

1 12 1 2 1 2

26 3 23 1

40 1 2 2

3 1

2

3 65.5 g mol 8.854 10  J  C  m 1.622 1
  

1.622 22.99 10  g m 6.022 10  mol

  3.40 10  J  C  m

M n

N n

ε
α

ρ
− − − −

− −

− −

 −
=  + 

× × ×  −
= × +× × ×  

= ×
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and solve the Clausius−Mossotti eqn [17A.13] for εr with which we calculate the refractive index. 
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16A.8(b) 30 15.17 10  C m  for bromobenzene (157.00 g mol )µ − −= ×  
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and solve the Debye eqn [16A.11] for εr. 

 r

r

1
  [16A.11, the Debye eqn]

2
C

ε
ε

−
=

+
 

 
( )

r

1 2

1

1 2 0.825
  

1 0.825

  15

C

C
ε +

=
−

+ ×
=

−
=

 

 

 
 16:3 



 
Solutions to problems 

 
16A.2 The point charge model can be used to estimate the magnitude of the electric dipole moment of hydrogen 
peroxide as a function of φ  (defined in Fig. 16A.1b as a view down the z axis of the O–O bond). Each hydrogen 

atom has a partial charge of δ; each oxygen atom has a partial charge of –δ. The dipole moment magnitude is  

 ( ) ( ) { }
1 1 2 2

1/21/2 2 2 2
J J H O O H

J

 where  [16A.4a,b], etc.x y z x Q x x x x xµ µ µ µ µ µ µ δ= ⋅ = + + = = × − − +∑  

We will use the Cartesian coordinate system defined in Fig. 16A.1a. The bond lengths are lOH = 97 pm and lOO = 
149 pm. We also use the ratio lratio = lOO / lOH = 1.54 and calculate μ in units of δlOH so that it is unnecessary to 
estimate the magnitude of δ.  The O–O–H bond angle, θ , may be estimated as 90° but we will use the 
experimental value of 100°. The computations of μx, μy, and μz require the coordinates of each atom; those of H1 
and the oxygen atoms are shown in Fig. 16A.1a. 
 

  
Figure 16A.1 
 
The coordinates of H2 can be determined by analogy to the relationships between Cartesian coordinates and 
spherical polar coordinates. They are: 

 

( )
( )

( )

OH

OH

OO OH

sin 180 cos

sin 180 sin

cos 180

x l

y l

z l l

θ φ

θ φ

θ

= ° −

= ° −

= + ° −

 

Substitution of variables into eqn. 16A.4b, yields 
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= ° + ° + ° + − ° − + + °

= ° + ° + ° + − ° + °

 

We now draw a table to calculate ( )2

OH/ lµ δ  in φ  increments of 15o and, subsequently, calculate OH/ lµ δ  

values at each φ . Fig. 16A.2 is a plot of the variation. As expected, there the dipole is a maximum of almost 

twice the single O–H bond dipole when the hydrogen atoms are eclipsed and it is zero when they have a gauche 
conformation. 
 

    
 
 
 
 
 
 
 
 

x

y

z

H1 H2

(a)

180  o − θ

( cos(lOH θ − 90 ),0,− θ − 90 ))ο οlOHsin(

(0,0,0)

(0,0, )lOO
H2

H1

φ

(b)

lOO

lOH

φ / deg φ / radians sq(µ  / δ l ) µ / δ l
0 0 3.879385 1.969616

15 0.261799 3.813292 1.952765
30 0.523599 3.619516 1.902502
45 0.785398 3.311262 1.819687
60 1.047198 2.909539 1.705737
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Figure 16A.2 
 

   
 
16A.4‡ Let the partial charge on the carbon atom equal δe and the N-to-C distance equal l. Then, 
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16A.6 The induced dipole moment μ* is given by 
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Consequently, the dipole-proton distance needed to induce a particular dipole is 
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16A.8 
2
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Eqn 16A.12 indicates that, when the permanent dipole moment μ contributes to the molar polarization in a 
manner that is consistent with thermal averaging of the electric dipole moment in the presence of the applied 

field (i.e., free rotation), a plot of Pm against 1/T should be linear with an intercept at 1/T = 0 equal to A

4π
3

N ′α  

and a constant slope for which 
( )

md

d 1/

P

T
 equals 

2
A

09

N

k

µ
ε

. Eqn 16A.12 is replaced by the Clausius−Mossotti 

expression, m A

4π
 [16A.13]

3
P N α ′= , in the case for which either the molecules are non-polar or because the 

frequency of the applied field is so high that the molecules cannot orientate quickly enough to follow the change 
in direction of the field. 
 
To examine the possibility that either solid or liquid methanol exhibits the characteristics of eqn 16A.11 or eqn 
16A.13, we draw up the following table and prepare the Figure 16A.3 plot of Pm against 1/T. The molar 
polarization Pm is calculated with eqn 16A.11 at all temperatures and, since the data have been corrected for the 
variation in methanol density, we use ρ = 0.791 g cm–3 for all entries and M = 32.0 g mol–1. 
 
 

‡ These problems were supplied by Charles Trapp and Carmen Giunta 
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θ  / ºC −185 −170 −150 −140 −110 −80 −50 −20 0 20 
T / K 88 103 123 133 163 193 223 253 273 293 
1000

/ KT
 11.3 9.69 8.12 7.51 6.13 5.18 4.48 3.95 3.66 3.41 

εr 3.2 3.6 4 5.1 67 57 49 43 38 34 

r

r

1

+2

ε
ε

−

 
0.42 0.46 0.50 0.58 0.957 0.949 0.941 0.933 0.925 0.917 

Pm 
/ (cm3 mol–1) 

17.1 18.8 20.2 23.4 38.7 38.4 38.1 37.7 37.4 37.1 

 
Figure 16A.3 
 

   
 
Inspection of Figure 16A.3 reveals that the molar polarization Pm is not a linear function of 1/T for either the 
solid or liquid phase of methanol. Nor is it a constant for either phase. Thus, we conclude that the conditions of 
eqns 16A.12 and 16A.13 are not applicable and it is not possible to extract reliable values for either the 
polarizability volume or the dipole moment from this data. The data does provide valuable conceptual 
information about molecular motion in the condensed phases. 
 
Figure 16A.3 indicates that, as the temperature of liquid methanol is reduced, Pm increases less rapidly than 
would be expected for the linear case of thermal equilibrium of the dipole with the applied field. The 
progression toward lower temperatures appears to have a negative second-order component, which extends into 
the solid phase. The second-order regression fit for 110 Cθ ≤ − °  reflects this significant non-linearity:  
 Pm / cm3 mol−1 = 31.246 + 2.3788 × (103 K / T) – 0.1904 × (103 K / T)2     with     R2 = 0.9914 
This indicates that hydrogen-bonding between methanol molecules is hindering molecular rotation and reducing 
the orientation polarization. The effect extends below the melting point with the −110ºC data point exhibiting 
liquid-like, hindered rotation. The large decline of Pm below −110ºC is interpreted as corresponding to a 
stronger hindrance of the dipole moment rotation but the non-constancy of Pm seems to indicate that rotational 
excitation is never completely eliminated. 
 
16A.10 Calculate the dipole moment of H2O and its polarizability volume. 
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A
m A 0

0

4π
   [16A.12 with 4π ]

3 9

N
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µ
α α ε α

ε
′ ′= + , =  

Eqn 16A.12 indicates that a plot of Pm against 1/T should be linear with a slope, 
( )

md

d 1/

P

T
, equal to 

2
A

09

N

k

µ
ε

 and a 

1/T = 0 intercept that equals A

4π
3

N ′α . Therefore, we draw up the following table and prepare a plot f Pm 

against 1/T. If it is linear, we perform a linear least squares regression fit of the plot so as to acquire the slope 
and intercept from which we calculate α ′  and μ. A suitable plot is shown in Figure 16A.4. 
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T / K 384.3 420.1 444.7 484.1 522.0 
1000

/ KT
 2.602 2.380 2.249 2.066 1.916 

Pm / (cm3 mol–1) 57.4 53.5 50.1 46.8 43.1 
 
 
Figure 16A.4 

 
 
The plot of Pm against 1/T is linear with a regression fit that gives an intercept of 3.44 cm3 mol–1 (not shown in 
the figure), and the slope is such that dPm/d(1/T) = 2.08 × 104 cm3 mol–1 K. It follows that 
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 ( )1/ 259 2 2
30

1 D
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3.33564 10  C m
−

−

 = × × = × 
µ  

 

16A.12 Since the refractive index nr and, therefore, the relative permittivity εr are close to 1, we infer that the 
dipole moment does not contribute to the molar polarization because either the gas phase molecules are non-
polar or the molecular rotational frequency is much lower than the frequency of the applied electric field, which 

is the case for infrared, visible, and ultraviolet radiation. Furthermore, the observation that the ratio r

r

1

2
C

ε
ε

−
≡

+
 

must be much less than 1 greatly simplifies mathematical manipulations. 

 r A

r 0 0

1
  [16A.13, Clausius Mossotti eqn]   [ / , perfect gas]

2 3 3

N p
Mp RT C

M kT

ε ρ α α ρ
ε ε ε

−
= − = = ≡

+
 

Solving the Clausius−Mossotti eqn for εr gives 

 ( ) ( ) ( )

r
0

12 3

1 2
     where     

1 3

   1 2 1   [Taylor series expansion of 1  for 1]

   1   [Second order and higher powers are insignificantly small and may be discarded.]

C p
C

C kT

C C C C C C

C

−

+
= =
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= + × − + − + −

= +

 
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1 2
r

1
2

0

(1 )   [16A.14]

   1   [Taylor expansion, discard higher order terms]

   1
6

n C

C

p
kT

α
ε

/= +
= +

= +

 

Thus, nr is linear in pressure p with an intercept equal to 1, which corresponds to a vacuum. The slope, 
06 kT

α
ε

, 

is so small (~10−4 bar−1) that we normally consider the refractive index of a gas to be 1.00. Very sensitive 
measurements of the refractive index as a function of pressure may be used to find the polarizability. Solving the 
above equation for α gives the computational equation using measured values of temperature, pressure, and 
refractive index: 

 ( )0 r6 1 /kT n pα ε= × −  

The polarizability volume is calculated with 
 0/ 4π   [16A.6]α α ε′ =  

 
 

16B  Interactions between molecules 
 

Answers to discussion questions 
 
16B.2 See Fig. 16A.2 of the text for typical charge arrays corresponding to electric multipoles. As a generality 
we may write 11/  [16B.6]n mV r + −∝  for the potential energy of interaction between an n-pole and an m-pole. 

More specifically, the interaction potential between a point charge Q2 (monopole, n = 1) and any of the 
multipoles (m = 2 or 3 or ...) is given as 1/ mV r∝  where r is the separation distance between Q2 and the 
multipole. This is a steeper potential energy decrease with r than that observed for the Coulombic interaction 
between two point charges: 1/V r∝ . The steeper decline originates in the case for which r l , where l is the 
separation of charge within the multipole, because, as r becomes relatively large, the array of charges in the 
multipole appears to blend together into neutrality causing lower order interaction terms to cancel. For example, 
the dipole terms within the monopole-quadrupole (m = 3) interaction potential cancel leaving only a 1/r3 term 
when r l .  
 
We use the linear quadrupole charge arrangement shown in Fig. 16B.1 to show this cancellation of lower order 
terms. Since we are interested in the case x = l/r << 1, the following Taylor series expansions are useful 
substitutions: 
 1 2 3 1 2 3(1 ) 1          and          (1 ) 1x x x x x x x x− −+ = − + − + − = + + + +   

Begin by adding the terms for the Coulomb potential interaction between the charge array of the quadrupole and 
the monopole Q2, substitute x = l/r, and perform Taylor series expansions on the functions of x. 

 

1 2 1 2 1 2
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2
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         2
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         1

Q Q Q Q Q Q
V

r l r r l
Q Q

r x x

Q Q
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 = − + 
+ − 
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ε

x− 2 3 4 2x x x+ − + + − 1+ x+{ }

{ }

2 3 4

2
2 41 22

         1

x x x

x Q Q
x x

r

+ + +

= + + +





 

The higher order terms within the polynomial are negligibly small compared to 1 in the case for which x = l/r << 
1, thereby, leaving the simple expression: 

 
2 2

1 2 1 2
3 3

0 0

2 1
     or     

4π 2π
x Q Q l Q Q

V V
r r r

= = ∝
ε ε

. 
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Figure 16B.1 
 

   

Q1
Q12Q1

l l

r

Q2

 
 
16B.4 A hydrogen bond ( ) is an attractive interaction between two species that arises from a link of the form 
A H B−  , where A and B are highly electronegative elements (usually nitrogen, oxygen, or fluorine) and B 
possesses a lone pair of electrons. It is a contact-like attraction that requires AH to touch B. Experimental 
evidences supports a linear or near-linear structural arrangement and a bond strength of about 20 kJ mol–1. The 
hydrogen bond strength is considerably weaker than a covalent bond but it is larger than, and dominates, other 
intermolecular attractions such as dipole-dipole attractions. Its formation can be understood in terms of either 
the (a) electrostatic interaction model or with (b) molecular orbital calculations. 
 
(a) A and B, being highly electronegative, are viewed as having partial negative charges (δ–) in the electrostatic 
interaction model of the hydrogen bond. Hydrogen, being less electronegative than A, is viewed as having a 
partial positive (δ+). The linear structure maximizes the electrostatic attraction between H and B: 

      
This model is conceptually very useful. However, it is impossible to exactly calculate the interaction strength 
with this model because the partial atomic charges cannot be precisely defined. There is no way to define which 
fraction of the electrons of the AB covalent bond should be assigned to one or the other nucleus. 
 
(b) Ab initio quantum calculations are needed in order to explore questions about the linear structure, the role of 
the lone pair, the shape of the potential energy surface, and the extent to which the hydrogen bond has covalent 
sigma bond character. Yes, the hydrogen bond appears to have some sigma bond character. This was initially 
suggested by Linus Pauling in the 1930's and more recent experiments with Compton scattering of x-rays and 
NMR techniques indicate that the covalent character may provide as much as 20% of the hydrogen bond 
strength. A three-center molecular orbital model provides a degree of insight. A linear combination of an 
appropriate sigma orbital on A, the 1s hydrogen orbital, and an appropriate orbital for the lone pair on B yields a 
total of three molecular orbitals. One of the MOs is bonding, one is almost nonbonding, and the third is 
antibonding. Both bonding MO and the almost nonbonding orbital are occupied by two electrons (the sigma 
bonding electrons of A–H and the lone pair of B). The antibonding MO is empty. Thus, depending on the 
precise location of the almost nonbonding orbital, the nonbonding orbital may lower the total energy and 
account for the hydrogen bond. 
 
16B.6 Kevlar is a polyaromatic amide. Phenyl groups provide aromaticity and a planar, rigid structure. The 
amide group is expected to be like the peptide bond that connects amino acid residues within protein molecules. 
This group is also planar because resonance produces partial double bond character between the carbon and 
nitrogen atoms. There is a substantial energy barrier preventing free rotation about the CN bond. The two bulky 
phenyl groups on the ends of an amide group are trans because steric hinderance makes the cis conformation 
unfavourable. 

A H B
δ δδ+
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The flatness of the Kevlar polymeric molecule makes it possible to process the material so that many molecules 
with parallel alignment form highly ordered, untangled crystal bundles. The alignment makes possible both 
considerable van der Waals attractions between adjacent molecules and for strong hydrogen bonding between 
the polar amide groups on adjacent molecules. These bonding forces create the high thermal stability and 
mechanical strength observed in Kevlar. 

    
Kevlar is able to absorb great quantities of energy, such as the kinetic energy of a speeding bullet, through 
hydrogen bond breakage and the transition to the cis conformation. 
 
 

Solutions to exercises 
 
16B.1(b) The H–Cl bond length of a hydrogen chloride molecule is 127.45 pm and the Mg2+ cation is 300 pm 
from the dipole center. Because these lengths are comparable, a calculation based on the assumption that the 
hydrogen chloride dipole acts like a point dipole with a dipole length much shorter than the dipole-ion distance 
is unlikely to provide an accurate value of the dipole-ion interaction energy. However, such a calculation does 
provide an "order-of-magnitude" estimate. The minimum value of the dipole-ion interaction occurs with the 
dipole pointing toward the cation. 

 
( ) ( ) ( )

( ) ( )

2+HCl Mg HCl
min 2 2

0 0

30 1 19

210 1 2 1 12

19

2
~  [16B.2]

4π 4π

2 1.08 D 3.336 10  C m D 1.602 10  C
     ~

1.113 10  J  C  m 300 10  m

     ~ 1.15 10  J

Q e
V

r r

µ µ
ε ε

− − −

− − − −

−

− = −

× × × × ×
−

× × ×

− ×

 

The interaction potential becomes a maximum upon flipping the dipole. This effectively changes the sign of the 
dipole in the previous calculation giving 
 19

max ~ 1.15 10  JV −×  
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The work w required to flip the dipole is the difference Vmax – Vmin. 

 
18

max min

3 1
m A

~ 2.30 10  J

~ 1.39 10  kJ mol

w V V

w w N

−

−

− = ×

= ×
 

 
16B.2(b) The two linear quadrupoles are shown in Fig. 16B.2 with a parallel configuration. 
 
Figure 16B.2 
 

      
 
In addition to the distance r between some of the point charges in one quadrupole and point charges in the other, 
the Pythagorean theorem provides the distances (r2 + l 2)1/2 and (r2 + 4l2)1/2. The total potential energy of the 
interaction between the quadrupoles is: 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

2 2 2 2 2
1 1 1 1 1

0 1/2 1/2 1/22 2 2 2 2 2

2 2 2 2
1 1 1 1

1/2 1/2 1/22 2 2 2 2 2

0
2 1/2 1/22 2

1

2 2 4
4π

4

2 2
                                                  

4

2π 4 1
3      where     

1 1 4

Q Q Q Q Q
V

r rr l r l r l

Q Q Q Q

rr l r l r l

rV l
x

rQ x x

ε

ε

= − + − +
+ + +

− + − +
+ + +

= − + =
+ +

 

With the point quadrupole condition that x << 1 the last two terms in the above expression can be expanded with 
the Taylor series: 

 
1/ 2 2 3 43 3 5 3 5 71 1 1 1

2 2 4 2 4 6 2 4 6 8

2 3 43 15 1051
2 8 48 384

(1 ) 1  

              1  

z z z z z

z z z z

−+ = − + − + −

= − + − + −




 

where z is either x2 or 4x2. 

 
{ } { }2 4 6 8 2 4 6 80 3 15 1051

2 8 48 3842
1

49
2

2π
3 4 1 1 2 6 20 70

           higher order terms

rV
x x x x x x x x

Q

x

ε
= − − + − + − + − + − + −

= − +

 
 

In the limit of small x values the higher order terms are negligibly small, thereby, leaving 

 
4 2 4 2

1 1
5

0 0

9 9

4π 4π
x Q l Q

V
r rε ε

= − = −  

Thus, 
5

1
V

r
∝  for the quadrupole-quadrupole interaction. See Discussion question 16B.2 and note that a 

quadrupole is n-pole array of charges with n = 3. So the above derivation demonstrates the general potential 

energy relation between an n-pole array and an m-pole array: 
1 3 3 1 5

1 1 1
n m

V
r r r+ − + −∝ = = . 

 

16B.3(b)
( )

( )
( )2 2

Ar Ar Ar Ar
London 6 6

Ar Ar

3 3
 [16B.8]

2 4

I I
V

I I r r

α α′ ′
= − = −

+
 

Q
1

Q
1

2Q
1

r

Q
1

Q
1

2Q
1

l l

 
 16:11 



 

( ) ( )
( )

230 3 1

69

1

3 1.66 10  m 1520.4 kJ mol
         

4 1.0 10  m

         3.1 J mol

− −

−

−

× × ×
= −

× ×

=

 

 
16B.4(b) Using the partial charge presented in the table to the 
right, we estimate the partial charge on each hydrogen atom of a 
water molecule to be QH = δe where δ = 0.42. The 
electroneutrality of an H2O molecule implies that the estimated 
partial charge on the oxygen atom is QO = –2δe. With a hydrogen 
bond length of 170 pm, the point charge model of the hydrogen 
bond in a continuum of water estimates the potential of 
interaction to be 
 

( )

( )
( ) ( ) ( )

2

H O

0

219

21

12 1 2 1 12

2
 [16B.1]

4π 4π

2 0.42 1.60 10  C
  6.0 10  J

4π 80 8.85 10  J  C  m 170 10  m

r

eQ Q
V

r r

δ
ε ε ε

−
−

− − − −

= = −

× ×
= − = − ×

× × × ×

 
The molar energy required to break these bonds is 

 ( ) ( )23 1 21 1
m A 6.022 10  mol 6.0 10  J 3.6 kJ molE N V − − −= − = − × × − × =  

The model of point charges embedded within a continuum of water yields an estimate of the hydrogen bond 
strength that is well below the experimental value of about 20 kJ mol–1. The excessively low estimate has been 
caused by the assumption that water around the point charges behaves as a continuum of matter. This 
significantly overestimates the ability of the surrounding water molecules to modulate the point charge 
interaction. 
 
 
 

Solutions to problems 
 
16B.2 The positive end of the dipole will lie closer to the (negative) anion in the most energetically favourable 
orientation for which the anion will be on line with the dipole. Let the positive end of the dipole have a charge 
δe while the charge on the other end is −δe and the water dipole is defined by µ = δel. The electric field 
generated by a dipole at the distance r where r≫l is sum of the fields generated by these two charges. 

 

( ) ( )

( ) ( )
( ) ( ){ }

2 2

0 0

2 2 2
0

2
0

3
0

3
0

4π 4π2 2

1 1

4π 1 12 2

1 1   [Taylor series expansion with 1.]24π

2π

  [Electric field generated by a point dipole.]
2π

(1 85 D) (3 34 10

e e

l lr r

e

r l l
r r

e l l l
r r rr

el

r

r

δ δ

ε ε

δ
ε

δ
ε

δ
ε
µ
ε

−

= −
− +

 
 = − 
 − + 

= + − −

=

=

. × . ×
=



E

30 1 19 1 8 1

12 1 2 1 3 3 3

Cm D ) 1 11 10 V m 1 11 10  Vm

2π (8 854 10 J C m ) ( m) ( nm)r r r

− − − −

− − −

. × . ×
= =

× . × × / /

 

(a) 8 11.1 10 V m when 1 0nmr−= × = .E  

  Partial charges in polypeptides 
(from Physical Chemistry; 
Atkins and de Paula,OUP, 9th ed. 2010) 
Atom Partial charge / e 

C(=O) +0.45 
C(−CO) +0.06 
H(−C) +0.02 
H(−N) +0.18 
H(−O) +0.42 
N −0.36 
O −0.38 
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(b) 
8 1

9 1
3

1 11 10 V m
4 10 V m for 0 3nm

0 3
r

−
−. ×

= = × = .
.

E  

(c) 
8 1

1
3

1 11 10 V m
4 kV m for 30nm

30
r

−
−. ×

= = = .E  

 
16B.4 (a) The energy of induced-dipole–induced-dipole interactions can be approximated by the London 
formula (eqn. 16B.8): 

 
2

1 2 1 2
6 6 6

1 2

3 3

2 4

I IC I
V

r r I I r

α α α′ ′ ′= − = − = −
+

 

where the second equality uses the fact that the interaction is between two of the same molecule. For two phenyl 
groups, we have: 

 
29 3 2 19 1

26 1
9 6

3(1 04 10 m ) (5 0 eV) (1 602 10 J eV )
1.8 10  J or 0.0096 J mol

4 (4.0 10 m)
V

− − −
− −

−

. × × . × . ×
= − = − × −

× ×
 

Comment. A distance of 0.40 nm, yields V = –9.6 kJ mol–1  
 
(b) The potential energy is everywhere negative. We can obtain the distance dependence of the force by taking 

 
7

d 6

d

V C
F

r r
= − = − .  

This force is everywhere attractive (i.e., it works against increasing the distance between interacting groups). 

The force approaches zero as the distance becomes very large; there is no finite distance at which the 

dispersion force is zero. (Of course, if one takes into account repulsive forces, then the net force is zero at a 
distance at which the attractive and repulsive forces balance.) 
 
16B.6 By the law of cosines 2 2 2

O H O H O O O H O O2 cosr r r r r θ− − − −= + − . Therefore, 

 ( )1/ 22 2
O H O H O O O H O O( ) 2 cosr f r r r rθ θ− − − −= = + −  

 
( )

( )

2 22 2
O H O H O O O OA A

m O H
0 O H O H O O 0 O H O O

22
O OA

O H12
O H O O0

1
O H

O H

1 1

4π 4π ( )

1 1
    

/ pm ( ) / pm / pm4π 10  m

1 1
    139 MJ mol

/ pm (

N e N e
V

r r r r f r

N e

r f r

r f

δ δ δ δ δ δ
δ δ

ε ε θ

δ
δ δ

θε

δ δ

− −

− − − −

−
−

− −

−

−

     = + + = + +    
     

   = + +  
×    

= × +



2
O O

O O) / pm / pmr

δ
θ

−

−

   +  
   

 

With δO = –0.83, δH = 0.45, rO–H = 95.7 pm, and rO–O = 200 pm we draw up a tabular computation of f(θ) and 
Vm(θ) over the range 0 ≤ θ ≤ 2π and plot Vm(θ) in Fig. 16B.3. As expected, the potential is a minimum when θ = 
0 because at that angle the hydrogen lies directly between the two oxygen atoms, which repel. 
 

    
 
 
 
 

θ  / deg θ  / radian f (θ ) V  / kJ/mol
0 0 104.30 -561

15 0.261799 110.38 -534
30 0.523599 126.52 -474
45 0.785398 148.63 -413
60 1.047198 173.26 -363
75 1.308997 198.12 -326
90 1.570796 221.72 -298
105 1.832596 243.04 -277
120 2.094395 261.34 -262
135 2.356194 276.09 -252
150 2.617994 286.90 -245
165 2.879793 293.49 -241
180 3.141593 295.70 -239
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Figure 16B.3 

    

16B.8 The number of molecules in a volume element dτ is d
d

N
V

τ τ= N . The energy of interaction of these 

molecules with one at a distance R is ( ) dV R τN . The total interaction energy, taking into account the entire 

sample volume, is therefore 

 ( ) d ( )d [ ( ) is the interaction energy not the volume]u V R V R V Rτ τ= = ,∫ ∫N N  

The total interaction energy of a sample of N molecules is ½Nu (the ½ is included to avoid double counting), 
and so the cohesive energy density is 

 2
1

2 1 1 d
2 2

( )
U Nu

u
V V

V R τ
−

= − = = − = − ∫U N N  

For 6
6

( )
C

V R
R

= −  and 2d 4π dR Rτ =  

 
2

2 6
6 4 3

d 2π2π
3d

CU RC
V R d

∞
− = = ×∫

N
N  

However, AN
M

ρ
=N , where M is the molar mass; therefore 

 ( )
2

6A
3

2π
3

CN
M d

ρ   = × ×   
   

U  

 
 

16C  Liquids 
 

Solutions to exercises 
 
16C.1(b) Calculate the vapour pressure of a spherical droplet of water of radius 20.0 nm at 35.0 °C. The vapour 
pressure of bulk water at that temperature is 5.623 kPa and its density is 994.0 kg m−3. 

 
1

3
m 3

18.02 g mol
18.13 cm

0.9940 g cm

M
V

ρ

−

−= = =  

 ( )
( ) ( )

( ) ( ) ( )

m2 (l)/

3 1 6 3 1

9 1 1

*e   [16C.20, the Kelvin eqn]

2 72.75 10  N m 18.13 10  m  mol
  5.623 kPa exp

20.0 10  m 8.3145 J K  mol 308.15 K

  5.92 kPa

V rRTp p γ

− − − −

− − −

=

 × × × × = ×  
× × ×  

=

 

 
16C.2(b) The contact angle for water on clean glass is close to zero. Calculate the surface tension of water at 30 
°C given that at that temperature water climbs to a height of 9.11 cm in a clean glass capillary tube of internal 
diameter 0.320 mm. The density of water at 30 °C is 0.9956 g cm−3. 
 1

2   [16C.9]grhγ ρ=  

-600

-500

-400

-300

-200

0 90 180 270 360

θ  / deg

 V
m

 / 
kJ

 m
o

l-1
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( ) ( ) ( ) ( )3 2 3 21

2

2 1

  995.6 kg m 9.80665 m s 0.320 10  m 9.11 10  m

  0.1423 kg s 142 mN m

− − − −

− −

= × × × × × ×

= =
 

 
16C.3(b) Calculate the pressure differential of ethanol across the surface of a spherical droplet of radius 220 nm 
at 20 °C. The surface tension of ethanol at that temperature is 22.39 mN m−1. 

 in out

2
 [16C.7, the Laplace eqn]p p

r

γ
− =  

 
( )3 1

9

5 2

2 22.39 10  N m
            

220 10  m

            2.04 10  N m 204 kPa

− −

−

−

× ×
=

×
= × =

 

Pressure differentials for small droplets are quite large. 
 
 
 
 
 

Integrated activities 
 

16.2 (a) 
12 6

0 04   [16B.14, Lennard Jones potential]
r r

V
r r

ε
     = − −    
     

 

The depth of the well in Joules is 23
e 1.51 10  JhcDε −= = × . 

The distance at which the potential is zero is given by 

 ( )1 6 1 6 1 6
e 0 0 e2 so 2 2 297 pm 265 pmr r r r/ − / − /= = = × = . 

A plot of the Lennard-Jones potential is shown in Figure I16.1. 
 

  
Figure I16.1 

(b) ( ){ }e
2

e e1 e   [12D.11, Morse potential energy]a r rV hcD hcD− × −= − −   

The constant ehcD−   has been added to the above expression for the Morse potential so that it has a minimum of 

e e at hcD r r− = . This makes it easy to compare the Morse potential with the Lennard−Jones potential of part (a), 

which also has a minimum of e e at hcD r r− = . Plots of both potentials are shown in Figure I16.1 with a = 

0.0579 pm−1 for the Morse potential. The Morse potential has a much steeper repulsive component at 
separations lower than re while the Lennard−Jones potential shows a longer-range attractive component. 
 
16.4 (a) Figure I16.2 displays electrostatic charges on the atoms of trans-N-methylacetamide as calculated with 
the DF/B3LYP/6-31G* method using Spartan '10 software. The dipole moment vector is shown in the figure 
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and it approximates points from the positive H atom at the C−H bond to the negative O atom. The calculated 
dipole moment is µ = 3.64 D. This agrees well with the experimental dipole moments at 25° of both acetamide 
(3.6 D, Handbook of Chemistry and Physics, 1991) and trans-N-methylacetamide in benzene solution (3.74 D, 
V.S. Rangra et al, Z. Naturforsch, 61a, 197, 2006). 
 

     
Figure I16.2 
The interaction energy of two parallel dipoles is given by eqn. 16B.4: 

 1 2
3

0

( )
 where  cos

4π
f

V f
r

µ µ θ
θ θ2= ( ) = 1− 3

ε
 

where r is the distance between the dipoles and θ the angle between the direction of the dipoles and the line that 
joins them. A plot of the interaction angular dependence is shown in the following Mathcad Prime 2 worksheet. 
Note that V(θ) is at a minimum for θ = 0° and 180° while it is at a maximum for 90° and 270°. Furthermore the 
interaction is positive and repulsive both when 54.74° < θ < 125.26° and when 234.74° < θ < 305.26°. Outside 
these ranges the potential is negative and attractive. 

 

 

 
 
(b)  

 
The maximum of both the dipole-dipole repulsion and attraction at 3.0 nm are dwarfed by a hydrogen bond 
attraction that is typically 20 kJ mol−1 at about 200 pm. However, the typical hydrogen bond length is much 
shorter, so this may not be a fair comparison. 
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16.6 (a) Here’s a solution using MathCad Prime 2 to perform the bivariable linear model regression fit. 
Data: 

 
The function  polyfitc with n = 1 performs the linear fit. The function submatrix takes rows 0-3 and columns 0-2 
of polyfitc. 

 
Thus, the linear fit is: 

 
Value checks give reasonable agreement with the data: 

 
 
(b) For a group having the properties S = 4.84 and log A = 7.60, the linear structure-activity model of part (a) 
requires the following value of W if the group is to belong to the set of the data.

 
( )7.60 3.59 0.957 4.84

0.362

1.72

W
− + ×

=

= −

 

Clearly, the value S = 4.84 is very much out of the S data range as is the computed value of W (−1.72) so we 
expect that a group X, which has these structure values, does not linearly correlate with this data set. So the 
question becomes “Can we modify the model so that it meaningfully includes the new group?” Let’s try by 
adding the cross-term S×W to the linear model. Here’s the Prime 2 worksheet: 

 
This non-linear structure-activity model seems to adequately describe the groups of part (a) so we now calculate 
the W value, using a Mathcad Solve block, for what is an outlier group in the linear model. 

 
This is close to the other W values and it is possible that the cross-term has extended the applicability of the 
model. 
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