16  Molecular interactions

16A Electric properties of molecules

Answers to dscussion questions

16A.2 Whenthe applied field changes direction slowly, the permanent dipole nidmas time to reorientate

the whole molecule rotates into a new directieand follows the field. However, when the frequency of the
field is high, a molecule cannot change directiort &amugh to follow the change in direction of the applied
field and the dipole moment then makes no contribution to the polarizatitve shmple. Because a molecule
takes aboutl ps to turn through abodtradian in a fluid, the loss of this contributitmthe polarization occurs
when measurements are made at frequencies greater than abéiz (i the microwave region). We say that
the orientation polarization, the polarization arising from the permanent dipole moments, is losthahigic
frequencies

The next contribution to the polarization to be lost as the frequency is ratbedlistortion polarization, the
polarization that arises from the distortion of the positions of the nucléigbgmplied field. The molecule is
bent and stitehed by the applied field, and the molecular dipole moment changes agbordhre time taken

for a molecule to bend is approximately the inverse of the molecular vitmhfrequency, so the distortion
polarization disappears when the frequency of the radiation is increasadkttithe infrared. The disappearance
of polarization occurs in stages: as showddstification16A.3, each successive stage occurs as the incident
frequency rises above the frequency of a particular mode of vibration.

At even ligher frequencies, in the visible region, only the electrons atslenenough to respond to the rapidly
changing direction of the applied field. The polarization that remainsnsine entirely to the distortion of the
electron distribution, and the surviving contribution to the molecular ipalility is called theelectronic
polarizability .

Solutions to ercises

16A.1(b) A molecule with a centre of symmetry may not be polar but moleculesdieg to the group€,,
Cwv» andCg may be polar (Topic 11AB0;, which has a trigonal planar structubgy), and Xel, which is

square planam},,), cannot be poIa (seesaw,C,,) may be polar.

16A.2(b) pt o = (142 + p2+2p 1 ,c080 }'*  [L6A.3a
=[(2.5) + (0.50f + (2) (2.5% (0.50) (cos120“] B[ 2.3

16A.3(b)u =Y Qr, =4e(0)- 2a, - 2, where y=ix  andr,=i %+ ¥
X, = 4162 pm
X, = 1,c0830 = (+ 143 prjw( 086p= 124
Y; = 1,5in30 = (143 prx( 050p= 71.5p
The components of the vector sum are the sums of the components.
1, = —2ex, — 2ex :—Ze<{(163+( 1?4)} pre-— &( 572 n:
u, =—2ey, =—-2ex(71.5 pm = - e( 143 pp
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u= (,uf +,u§)y2 [16A.4b]

:ex{(57_2 pn)’ +( 143 pr)f}% :( 1602 16 )g( 590 10 )

IR

=(9.45x 10® C
( n> [3 33564 1030

The angle that: makes withx-axis is given by

cosébwzz_2 so A= coé{%_cz)]:’

4 590

16A.4(b) Polarizabilitya, dipole moment, and molar polarizatioR,, are related by

P = [ﬁ] [a +”—2] [16A.12]
3¢, AT

In order to solve fory, it is first necessary to obtainfrom the temperature variation Bf,.

KT N,

Therefore(gli)x(%—.r—l,)z(%)x(Pm—P,;) [P, at T, B atT’

A
and hence
2 e kx (P —F)

B 1 1
N - =
AX(T T’j
_9x(8854<10” ¥ €& nty (13&% 1§ JKx) (7574 7143 im°mol

(6.022x 16° m011)<( 1 1 Kj
3200K 421.7

=1.045% 10° &

=3.23x 10* Cmnx [0.968]
. (3 33564 1030 rJ
_ 3g,R, _y_z
N, 3kT
3><(8.854>< 10% 3 € r‘nl)x( 75.34 10 rﬁdy 1.045x 10° & m
- 6.022< 16> mol* 3x(138% 10% JK')x( 3200 K
=256 10° J &
Corresponding tax' = =12.2% 10*°

16A.5(b) M =85.0 g mot*

g —1= ”NFI)m x(g+2) [16A.11]

) PP, _1, 20
M M

M +2pP
" M-pP,
85.0 g mol' + X( 1.92 g crfi)x( 32.16 cm my|

85.0 g mol'—( 1.92 g ci)x( 32.16 cm my)
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& -1 pN.a
&+2 Mg,

16A6(b)n, = (,)*? [16A.14] and [16A.1:

Therefore,

3Mgo[ ,2—1]
a: —_—
PN, (n?+2

_ 3x(65.5gmof)x( 8854 16 I T ﬁ)x(lﬁzz_ 1
(29910 gm’)x( 6.022 ® md) (1627 + 2
=[3.40¢ 10° 3 & M|

16A7(b) o' =—%— [16A.6]
4ne,
o =4me,a =(1.11265x107° I C* m™")x(2.2x107*m I =2.45x10"°J'C *m
Let
N, (865x10 gm’)x( 6.022 1 mdi)x( 245 18 U *C Im 0.0665
T 3Me, 3x(72.3 g mot)x( 8.85410 1& I T ) o
and solve the Clausius—Mossotti eqn [17A.13] for ¢, with which we calculate the refractive index.
-1 . .
47 _¢c [16A.13, the Clausius Mossotti ec
& +2
1+ 2C
& =
1-C
1+2x(0.0665
~ 1-0.0665
=1.2137

n =& [17.17]=(1.2137* =[ 1.1

16A.8(b) 11 =5.17x10*° C m for bromobenzene (157.00 g
o =4nc,e' [16A.6]=(1.11265x10"° I C*m *)x(1.5x10 ®m ) = 1.67x10" *J" 'C °m’

2
P, _Naf g2 1eaa2)
3¢, KT

(1.6_7>< 10° 3 ¢ rﬁ)
6.022< 16° mot*

2
© 3x(8.8541% 107 1 & ni)| 4 (5.17x10® Cn)
3x(1.380% 10° JK')x( 298.15K

=8.6% 10° m mof

Let
pP. (149116 gnt)x( 869 16 M md) _
M 157.00 g mot
and solve the Debye eqn [18A4] for ,.
&=l _¢ [16A.11, the Debye eq
& +2
1+ 2C
& =
1-C
1+2x(0.829
~ 1-0.825
-
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Solutions to poblems

16A.2 The point charge model can be used to estimate the magnitude of the electric dipelet iof hydrogen
peroxide as a function of (defined in Fig. 16A.lh as a view down theaxis of the GO bond). Each hydrogen

atom has a partial chargedfeach oxygen atom has a partial chargejofThe dipole moment magnitude is
e (ﬂ.y)l’z = (ﬂxz +p,? +y22)1l2 whereu, = > Q,x, = 5><{xH — Xy = X, + )%} [16A.4a,b], etc
J

We will use the Cartesian cabinate system defined in Fig. 18&. The bond lerths ardon = 97 pm andoo =
149 pm. We also use the ratigo, = loo/ lon = 1.54 and calculatein units ofdlon SO that it is unnecessary to
estimate the magnitude &f The G-O-H bond angle g, may be estimated as 90° but we will use the
experimental value of 100°. The computationg,pft,, andu, require the coordinates of each atom; those;of H
and the oxygeatoms are shown in Fig. 16k.

(I,.cos@ — 90),0,-1,.sin@ —90)) X
H

1

(0,0)60) -

(a) (b)

Figure 16A.1

The coordinates of {tan be determined by analogy to the relationships between Cartesian &iesredim
spherical polar coordinates. They are:

x=ly, sin(180-6) cog
y = loy Sin(180 - 0) siry
Z=lyo+ 1oy c08(180-6)
Substitutionof variables into eqn. 164b, yields
(11 8w ) = (111 33+ (11, 1 )" + (12,1 )"
={ cog 10+ sin 8 cp¥ +{ $in°Go @A+{- (SIPRO .+ 0+ (CO8)K
={ cob 19+ sin 8D cp¥ +{ ¢in°g0 @jni+{- (iP)O (cos)lg0
We now draw a table to lcailate (/6 )2 in ¢ increments of 1%and, subsequently, calculate/ 51,

values at eaclyp . Fig. 16A2is a plot of the variation. As expected, there the dipole is a maximum e$talm

twice the single ©6H bond dipole when the hydrogen atoms are eclipsed and it is zerohelyematve a gauche
conformation.

¢ /deg ¢ /radians squ/ol) u/dl
0 0 3.879385 1.969616
15 0.261799 3.813292 1.952765
30 0.523599 3.619516 1.902502
45 0.785398 3.311262 1.819687
60 1.047198 2.909539 1.705737
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Figure 16A.2

Dipole Moment of Hydrogen Peroxide
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16A.4" Letthe partial charge on the carbon atom eguaind the Nto-C distance equal Then,

u=0el [16A4a] or &= ﬁl
e

(1.77 D)x( 3.3356 16° CmD)

5= =[0.123

(1.602x 10" c)x( 209 107 |)q

16A.6 The induced dipole moment is given by
dne,a'e  a'e
-2

1* = aE [16A.53] = dne,a'E [16A.6]=

Anggr® v
Consequently, the dipolgroton distance needed to induceaaticular dipole is

o (a_'ejllz
u*
_{(1.48>< 10° ni)x( 1602 10°

(1.85 D)x( 3.336 10° Cmﬁ)J =[196 pr

2

16A8 P, :Mx( i "1j [16A.11] andP, :4—;‘ Ny + A4 16A12 withe = Asa]

p & +2 9, KT

Egn 16A12 indicates that, when the permanent dipole momewntributes to the molar polarization in a
manner that is consistent with thermal averaging of the electric dipatentan the presence of the applied

field (i.e., free rotation), a plot &, against 1T should be linear with an intercept alT ¥ 0 eqial to 4—; N, o'

. dP, N, 1
and a constant slope for Wh|elc11L equals Al Eqgn 16A12 is replaced by the Clausius—Mossotti

d(1m) 9¢.k
expression,P, = 4—5 N,a' [16A.13], in the case for which either the molecules arepuar or because the

frequency of the applied field is so high that the molecules cannataigequickly enough to follow the change
in direction of the field.

To examine the possibility that either solid or liquid methanol etehilé characteristics of eqn 164 or eqn
16A.13, we draw up the followingable and prepare the Figure 18Alot of P, against IT. The molar
polarizationP,, is calculated with eqn 1641 at all temperatures and, since the data have been corrected for the
variation in methanol density, wesep = 0.791 g crit for all entriesandM = 32.0 g mol™.

*These problems were supplied by Charles Trapp and Carmen Giunta
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fg/°Cc -18 -170 -150 -140 -110 —80 50 20 0 20
T/K 88 103 123 133 163 193 223 253 273 293

% 11.3 9.69 8.12 751 6.13 518 448 395 366 341
& 32 36 4 5.1 67 57 49 43 38 34
g -1
€'+2 0.42 0.46 0.50 0.58 0.957 0.949 0.941 0.933 0.925 0.917
Pm , 171 188 202 234 387 384 381 377 374 371
/ (cn? mol™?)
Figure 16A.3
40 - ' °
0®® o ¢ |
35 4 o :
liquid phase
T |
g 30 - |
"i&) ! solid phase
\E 25 i
o melting point ¢
20 - | L]
' L]
! °
15 T T T T 1
2 4 6 8 10 12
1000 K /T

Inspection of Figure 16& reveals that the molar polarizati®y is not a linear function of T/for either the
solid or liquid phase of methanol. Nor is it a constant for either phass, We conclude that the conditions of
egns 16A12 and 16Al13are not applicable and it is not possible to extract reliable values for either the
polarizability volume or the dipole moment from this data. The data doeslp valuable conceptual
information about molecular motion in the condensed phases.

Figure 16A3indicates that, as the termpture of liquid methanol is reducde), increases less rapidly than
would be expected for the linear case of thermal equilibrium of the dipdieheitapplied field. The
progression toward lower temperatures appears to have a negativeeetmmmbmpoant, which extends into
the solid phase. The secearter regression fit fop) < —-110° C reflects this significant noelinearity:

Pm/cn? mol ' =31.246 + 2.3788 x (K / T) —0.1904 x (16K / T)> with R=0.9914
This indicats that hydrogeionding between methanol molecules is hindering molecularawtatid reducing
the orientation polarization. The effect extends below the melting point with the —110°C data point exhibiting
liquid-like, hindered rotation. The large declioieP,, below —110°C is interpreted as corresponding to a
stronger hindrance of the dipole moment rotation but thecoostancy oP,,, seems to indicate that rotational
excitation is never completely eliminated.

16A.10Calculate the dipole moment ob® and its polarizability volume.
2

P :ﬁ NAa'+NA—’u [16A.12 witha = &g a']
3 9% KT

- . . . N, 2
Egn 16A12 indicates that a plot &%, against 1T should be linear with a slopedi, equal to A% and a

d(1m) 9,k

1/T = 0 intercept that equalg:;—E N,a'. Therefore, we draw up the following table and prepare & pigt

against IT. If it is linear, we perform a linear least squares regression fit of thegks to acquire the slope
and intercept from which we calculaté andu. A sutable plot is shown in Figure 16/
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T/K 384.3 420.1 444.7 484.1 522.0

%) 2.602 2.380 2.249 2.066 1.916
P./ (cn® mol™) 57.4 53.5 50.1 46.8 43.1
Figure 16A.4
65 1
60
E 55
B
2 50 -
45 -
40 1 1 1 1 1 1 1
1.9 20 2.1 22 23 24 25 26 27
1000 K
T

Theplot of P, against 1T is linear with a regression fit that gives an intercef®.4# cni mol™ (not shown in
the figure), and the slope is such thegai(1/T) = 2.08 x 16.cm® mol™ K. It follows that

o = 3Pn (@t intercept)_ 3x(3.44 cni mot')

2 =[1.36x 10%* cnd
4nN, 4mx(6.022x10% mol )

2 9k dP,
N, d(1rm)

:{9x(8.85419< 107 3 € mi)x( 1.3897 10 m}x(z.o& 10° ni mof K
6.022¢< 16° mol*

=3.80<10° ¢ m

1D
~(3.80x 10%° & rﬁllzx[ FJ:-Z-l.SS
u=( ) 3.33564 10° C

16A.12Since the refractive indax and, therefore, the relative permittivityare close to 1, we infer that the
dipole moment does not contribute to the molar polarization becausetkeélygs phase moleculas aon
polar or the molecular rotational frequency is much lower than thegnegof the applied electric field, which

. . . . . . -1
is the case for infrared, visible, and ultraviolet radiation. Furthermogeobservation that the rati®= & >
& +

must be much less than 1 greatly simplifies mathematical manipulations
-1 N . .
b= PN [16A.13, Clausius Mossotti eqﬁ]a—p pEMp RT ,pfectgask C
£ +2 3Mg, KT
Solving the Clausius—Mossotti eqn for &, gives

gr:1+2C where C=_%P
1-C 3, kT

=(1+ X)x(1-C+C* - C+-+) [Taylor series expansionof-T) " rfe< 1]
=1+C [Second order and higher powesms iasignificantly small and may be disdad.]
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n = (1+C)"? [16A.14]
=1+ % C [Taylor expansion, discard highwder terms

T p
6, KT
Thus,n, is linear in pressurp with an intercept equal to 1, which corresponds to a vacuum. The séegﬁ ,
80

is so small (~10 bar') that we normally consider the refractive index of a gas to be 1.00. dfesitise
measurements of the refractive index as atfan®f pressure may be used to find the polarizability. Solving the
above equation fax gives the computational equation using measured values of tempepatssure, and
refractive index:

a=6ekTx(n-1)/p
The polarizability volume isalculated with

a'=aldne, [16A.6]

16B Interactions between molecules

Answers to dscussion questions

16B.2See kg. 16A.2 of the text for typical charge arrays corresponding to electric mulsp&éea generality

we may writeV o 1/r™™* [16B.6] for the potential energy of interaction betweemgole and am-pole.

More specifically, the interaction potential between a point ch@sgeonopolen = 1) and any of the
multipoles =2 or 3 or...) is given ag o« 1/ r™ wherer is the separation distance betwé&grand the
multipole. This is a steeper potential energy decreaser htm that observed for the Coulombic interaction
between two point charge¥.« 1/r . The steeper declir@iginates in the case for whiah>1 , wherel is the
separation of charge within the multipole, because basomes relatively large, the array of charges in the
multipole appears to blend together into neutrality causing lower or#eaction terms to cancel. For example,
the dipole terms within the monopeteiadrupolerf= 3) interaction potential cancebiging only a 1 term
whenr >1 .

We use the linear quadrupole apmarrangement shown in Fig. L&Bo show this cancellation of lower order
terms. Since we are interested in the casd/r << 1, the following Taylor series expsions are useful
substitutions:

L+X) =1-x+ X = X+ and Ax )= Ax X+ X+
Begin by adding the terms for the Coulomb potential interaction betweea#énge array of the quadrupole and
the monopol&),, substitutex = I/r, and perform Taylor series expansions on thetfans ofx.

sy -9 200 QQ

r+l r r -

=Q1Q2{ 1 -2 1}

r 1+x 1-x

=%{/l/f+x2—x3+ Xt A A K+ X+ X+ X“}
=m{]ﬂ_x2+x‘l+...}
r

The higher order terms within the polynomial are negligibly smafipgared to 1 in the case for whigkr |/r <<
1, thereby, leaving the simple expression:

y_2¥QQ_FeQ o, 1

= or
Aneyr  2me,r? r
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Figure 16B.1

e
|

16B.4 A hydrogen bond(---) is an attractive interaction between two species that arises from a linkfofrthe
A—-H---B, where A and B are highly electronegative elements (usnilggen, oxygen, or fluorine) and B
possesses a lone pair of electrons. It is a colikechttraction that requires AH to touch B. Experimental
evidences supports a linear or néaear structural arrangement and a bond strength of about 20 KJ The!
hydrogen bond strength is considerably weaker than a covalent bond butgeighan, and dominates, other
intermolecular attractions such as dipdipole attractions. Its formation can be understood in terms of either
the (a) electrostatic interaction model or with (b)lesolar orbital calculations

(a) A and B, being highly electronegative, are viewed as having partial negative charges (87) in the electrostatic
interaction model of the hydrogen bond. Hydrogen, being lessaegative than As viewed as having a
partial positive (8*). The linear structure maximizes the electrostatic attraction between H and B:

& 8" 5

S ‘B

This model is conceptually very useful. However, it is impossible datixcalculate the interaction strength
with this modébecause the partial atomic charges cannot be precisely defined. There is no efaetwhich
fraction of the electrons of the AB covalent bond should be assigned to oreotingh nucleus.

(b) Ab initio quantum calculations are needed in ordexfae questions about the linear structure, the role of
the lone pair, the shape of the potential energy surface, and the extent toheliigtirogen bond has covalent
sigma bond character. Yes, the hydrogen bond appears to have some sigmaitzmbelr dthis was initially
suggested by Linus Pauling in the 1930's and more recent experimen®owigtion scattering ofsays and

NMR techniques indicate that the covalent character may provide as much a$ tt@ hydrogen bond

strength. A threeenter madcular orbital model provides a degree of insight. A linear combinatian o
appropriate sigma orbital on A, the Hydrogen orbital, and an appropriate orbital for the lone pair on B yields a
total of three molecular orbitals. One of the MOs is bonding, is almost nonbonding, and the third is
antibonding. Both bonding MO and the almost nonbonding orbital are occupie leetvtrons (the sigma
bonding electrons of A1 and the lone pair of B). The antibonding MO is empty. Thus, depending on the
precisdocation of the almost nonbonding orbital, the nonbonding orbital may liwdotal energy and

account for the hydrogen bond.

16B.6Kevlar is a polyaromatic amide. Phenyl groups provide aromaticity alaharprigid structure. The
amide group is expted to be like the peptide bond that connects amino acid residues witigim pnolecules.
This group is also planar because resonance produces partial double bond dietiaetsr the carbon and
nitrogen atoms. There is a substantial energy barrigeptiag free rotation about the CN bond. The two bulky
phenyl groups on the ends of an amide group are trans because steric binderkes the cis conformation
unfavourable.
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4° ={ g 0

N=C
}{ D FESONANCE H/ D
trans lrans
+ energy
H 0
, o

The flatness of the Kevlar polymeric molecule makes it possible tepsthhe material so that many molecules
with parallel alignment form highly ordered, untangled crystal bundiles alignment makes possible both
considerable van der Waals attractions between adjacent molecules and foryatroggrhbonding between
the pola amide groups on adjacent molecules. These bonding forces create ttieehigdd stability and
mechanical strength observed in Kevlar.

hydrogen bond

Q.
S Q

f} &

hydrogen bond N—C 5* —
\\\ H/ & T px:l&r.-.m alent bonds
o
0§ '-.\
v
/N—C ~—

H " polar, covalent bonds

Kevlar is able to absorb great quantities of energy, such as the kinetic ehargyeeding bullet, through
hydrogen bond breakage and the transition to the cis conformation.

Solutions to ercises

16B.1(b) The H-CI bond length of a hydrogen chloride molecule is 127.45 pm and thecktipn is 300 pm
from the dipole center. Because these lengths are comparable, a calculation basedsomgimadhat the
hydrogen chloride dipole acts like a point dipole with a dipole length mhartes than the dipol®n distance
is unlikely to povide an accurate value of the dip@@ interaction energy. However, such a calculation does
provide an "ordepf-magnitude" estimate. The minimum value of the dipoteinteraction occurs with the
dipole pointing toward the cation.

eI Qe . 2uy®

~-——9 [16B.2]=
Angyr? [ ] dney?

2x(1.08 Dx( 3.336 16° CmD)x( 1.662 0 )
(L113<10° 3 & mi)x( 300 1& |m

~-1.15 10° J
The interaction potential becomes a maximum upon flipping the dipbie effectively changes the sign of the
dipole in the previous calculation giving
V., ~1.15¢ 10" .

min
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The workw required to flip the dipole is the differen@ga— Viin-
w~V, -V =230x 10" J

w_ =wN, ~|[1.39x 16 kJ mot]

16B.2(b) The two linear gadrupoles are shown in Fig. 1@Bvith a parallel configuration.

Figure 16B.2

In addition to the distanaebetween some of the point charges in one quadrupole and point charges ietthe oth
the Pythagorean theorem provides the distanées|f)’>and ¢* + 41%)2 The total potential energy of the
interaction between the quadrupoles is:

B Q2 2Q2 QLZ 2Q2 4Q2
4neV _Tl_(rz +|12)1/2 + (I‘ 2.4 2>1/2_ (I‘ 2 ] 2)1/2"' p
2Q12 Q12 2Q12 QLZ
_<r2 N 2)1/2 +(r 2.4 2)1/2_(r 2 2)1/2+T
eV _g 4 + ! where x !
Q’ (1+x° )M (1+ 4x2)1/2 r

With the point quadrupole condition thak< 1 the last two terms in the above expression can be expanded with
the Taylor series:

:l 1/2_:1 1 13 1352 13572
( + Z) _E Z+E_ —_—=x +____ —_—e
1 3 i 15 2 105 f
}_ Z+_ __8 +3_ —_——e

2“5’0;\’ 3 4{1- 3+ 3X 50+ 48 ¢ 1 264 B 208+ TOR—--)
1

=-2x*+ higher order terms
In the limit of smallx values the higher order terms are negligibly small, thereby, leaving
__9X4Q12 e 9|4Q12

Ane,yr Angyr®

Thus,V o« is for the quadrupolguadrupole interactiorBee Discussion question 18Band note that a
r

qguadrupole i:-pole array of chargewithn = 3. So the above derivation demonstrates the general potential
1 1

preml :rawrl:r_s'

energy relation between arpole array and am-pole array:V o«

" 2 ;N2 |
16B'S(b)VLondon = _% [1688]: _—3(0{2 )6 Al
Ar + Ar
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3x(1.66+< 10% rﬁ)2 x( 1520.4 kJ md)
4x(1.0¢10° 1)’

=[3.1.3 mof]

16B.4(b)Using the partial charge presentedtia table to the
right, we estimate the partial charge on each hydrogen ateam gf Partial charges inpolypeptides

water molecule to b&y = de where & = 0.42. The (from Physical Chemistry;
electroneutrality of an 0 molecule implies that the estimated | Atkins and de Paula,OUP"@d. 2010)
partial charge on the oxygen atonQig= -2de. With a hydrogen | Atom Partial charge ¢
bond length 0ofL70 pm, the point charge model of the hydrogen C(=0) +0.45
bond in a continuum of water estimates the potential of C(-CO) +0.06
interaction to be H(_C) 1002
H(=N) +0.18
2
V — QHQO - _ 2(58) [1681] H(—O) +042
Aner 4dne gl N —0.36
2(0.42¢ 166 10° § © ~0.38
=— =-6.0x10"" J

4m(80)x(8.85x10™ J7* C* m *)x(170x10 ** m)

The molar energy required to break these bonds is

E,=-N,V=—(6.022<16° mol')x(- 6.8 16" }=| 3.6 ki md)

The model of point charges embedded within a continuum of water yieldsraatesof the hydrogen bond
strength that is well below the experimental value of about 20 k3.rfibke excessively low estimate has been
caused by the assumption that water around the point charges behaves asiansaitmatter. This
significantly overestimates the ability of the surrounding wateeoubés to modulate the point charge
interaction.

Solutions to poblems

16B2 The positive end of the dipolll lie closer to the (negative) anion the mosenergeticallyfavourable
orientationfor which the anion will be on line with the dipolest the positive end of the dipole have a charge
e while the charge on the other end is —de and the water dipole is defined joy= del. The electric fidd
generated by a dipok the distance wherer>1 is sum of the fields generated by these two charges.

oe oe

(g mafre )

_ oe 1 _ 1
47'E€0I’2 (1_V2r)2 (1+%)2

= 4nier2 {(1+ %)—(1— %)} [Taylor series expansion Wi% < 1)
0

_ el
 2ng,r°
-_# 5 [Electric field generated by a poinipdle.]
2ng,r
_ (1.85D)x (334 10°CmD™*) 11k 10*° vm*' 11% 10 v
C 2nx(8.854x102JC?m Yxr® (r/m)®  (/nm)°

(@) £=[1.1x10 Vvm'| whermr = 10nr
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111x 16 vm* —

(b) £=T=4x109 vm?'| forr=0Q03nm
1.11x 16 vm?*

c F=""""" - |4Akvm?| forr=30nm
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16B 4 (a) Theenergy of inducedlipole-induceddipole interactions can be approximatgdthe London

formula (egn. 16EB):
Vv =_£=_3al’a; I, =_?W'ZI
re 2% 1+, 4°
where the second equality uses the fact that the interaction is between hecaifie molecule. For two phenyl
groups, we have:

29 _
v :_3(].04>< 10 m ¥x (50 eV% @60 18 JeV :)—1.8>< 107 J ol— 0.0096 J md
4x (4.0x 10° m§
CommentA distance of 0.40 nm, yieldé=—9.6 kJ mot*

(b) The potential energy is everywhere negative. We can obtain the distance dependenéaroé by taking
dav 6C

a7
This force iseverywhere attractiva.¢., it works against increasing the distance betvistemacting groups).
The force|approaches zero as the distance becomes verj/; there is no finite distance at which the

dispersion force is zero. (Of course, if one takes into account repulebes fthen the net force is zero at a
distance at which the attractive and repulsive forces balance.)

16B6 By the law of cosinesZ , =r; ,,+r2 ;=2 4 [ o oCO¥ . Therefore,

1/2
o = F(0) = (101 +15.0=2 6§ 0 0COY)

N, & 8.6, 8.5, 62 e 1 1 62
V_ A {OH+OH+ O—O}:NA {505H[r j_i_oo

= +
m
dney oy Ton Too 4rne on @) rgg

2
__ Ne 5.6, 1 1 .%o
41tgo><<10’12 m) ow/Pm £©@)/pm) 1o /pm

1 1 52
= (139 MJ mof' ) 50(5H[ sy ]+ 0/0
rO—H pm () pm rO—O pm

With 6o =-0.83,04 = 0.45,ro_y = 95.7 pm, ando_o = 200 pm we draw up a tabular computatiof{@f and
Vm(6) over the range 0 < 6 < 2w and plot V() in Fig. 16B3. As expected, the potential is a minimum wHhen
0 because at that angle the hydrogen lies directly between tloxygren atoms, which repel.

6 /deg 0@ /radian f(0) V [ kd/mol
0 0 104.30 -561
15 0.261799 110.38 -534
30 0.523599 126.52 -474
45 0.785398  148.63 -413

60 1.047198 173.26 -363
75 1.308997 198.12 -326
90 1570796 221.72 -298
105 1.832596 243.04 =277
120 2.094395 261.34 -262
135 2.356194 276.09 -252
150 2.617994  286.90 -245
165 2.879793  293.49 -241
180 3.141593 295.70 -239
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Figure 16B.3
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Ndz = wdr . The energy of interaction of these

16B.8 The number of molecules in a volume element drt is
molecules with one at a distanRés V(R)» dr . The totalinteraction energy, taking into account the entire

sample volume, is therefore

u= IV( Rwnvdr = WI V(Rdr [\ Ris the interaction energy notetlvolume’

The total interaction energy of a sampléNaholecules is ¥u (the Y2 is included to avoid double counting),
and so the cohesive energy density is

U -%Nu 1 1.2
= ——=— == =—-= V R
v v v 2j\fu ZW,[ (Rdr

For V(R) = —% and dzr = 4nR*dR

U_o aee [“dR_ 21 NG
—V—ZTCW Cejd E—?XT

However, & = Nl\?lp , whereM is the molar mass; therefore
2
2 N, o C
U= (?”)(VJ [d_j
16C Liquids

Solutions to &ercises

16C.1(b)Calculate the vapour pressure of a spherical droplet of water of @liusm at 35.0C. The vapour
pressure of bulk water at that temperature is 5.623 kPa and its der@#.0 kg .

1
_M _18.02 g mol _1813 cil

" 5 0.9940 g cnit
p= pre”"0'®T [16C.20, the Kelvin eqn]

2x(72.75 16° Nri)x( 18.18 16 ™ md) }(
(20.0<10° mx( 8.3145 IR mdi)x( 308.15)

— (5.623 kPax ex%

=[5.92 kP&

16C.2(b)The contact angle for water on clean glass is close to zero. Calculate the susiacedtewater at 30
°C given that at that temperature water climbs to a height of 9.11 cm in a dearcgpillary tube of internal
diameter 0.320 mm. Thaensity of water at 36C is 0.9956 g cni.

y=Y%pgrh [16C.9]
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= %x(995.6 kg ) x( 9.80665 myx( 0.320 10 )nf K11°10)
=0.1423 kg€ =| 142 mNT
16C.3(b)Calculate the pressure differential of ethanol across the surface of a spherilgdlafn@galius 220 nm
at 20°C. The surface tension of ethamolthat temperature is 22.39 mN'm
B — Pout = 2 [16C.7, the Laplace eq
r

2><(22.39< 10° N ml)
220x 10° m

= 2.04 10 Nm=| 204 KH

Pressure differentials for small droplets are quite large.

Integrated activities

r

The depth of the well in Joules is= hcD, =[1.51x 10% J.

The distance at which the potential is zero is given by

r,=2""r, S0 ro=r 2= 2'°x( 297 prj=| 265 p}.

A plot of theLennardJonegotential is shown in Figurd 6.1.

12 6
16.2(@) V :45{(r—°j —(r—oj } [16B.14, Lennard Jones potent
r
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Figure 116.1

~ 2 ~
(b) V =hch, {1— e‘ax(r're)} - hcD [12D.11, Morse potential enert
The constant—the has been added to the above expression for the Morse potential so thatritihiasuan of

—hCDe at r = r,. This makes it easy to compare the Morse potential with the Lennard—Jones potential of part (a),

which also has minimum of-hcD, atr = r,. Plots of both ptentials are shown in Figut&6.1 with a =

0.0579 pm' for the Morse potential. The Morse potential has a much steeper repulsivenesingb
separations lower thag while the Lennard—Jones potential shows a longerange attractive component.

164 (a) Figurel16.2 displays electrostatic charges on the atoms of tkanmethylacetamide as calculated with
the DF/B3LYP/631G* method using Spartan '10 software. The dipole moment vector is ghttvenfigure
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and it approximates points from the positive H atom at tHd Bond to the negative O atom. The calculated
dipole monent is. This agrees well with the experimental dipole moments abPBoth acetamide
(3.6 D, Handbook of Chemistry and Physics, 1991) and-tdamethylacetamide in benzene solution (3.74 D,
V.S. Rangra et al. Naturforsch61a, 197, 2006).

~0.52

+0.17

Figure 116.2
The interaction energy of two pdelldipoles is given by eqn. 168
f
\% :L(f) wheref(8)=1-3 co®

Ane 1
wherer is the distance between the dipoles &nlde angle between the direction of the dipoles e line that
joins them. A plot of the interactieangular dependence is shown in the following Mathcad Prime 2 worksheet
Note thatV(6) is at a minimum fof= 0° and 180 while it is at a maximum fo®0° and270°. Furthermore the
interaction is positive and repulsive both when 5474 < 125.26 and when 234.74< §< 305.26. Outside
these ranges the potential is negative and attractive.

1i=3.64:3.33564.10".Com  7:=3.0.10".m  £,:=8.85419.10".J".C*.m™'

'

f(8):=1-3+cos(0) i:=0..360  0:=i-deg  N,:=6.02214-10*-mol '
2 .
-f(O
V(0):= M'Nr\
deqregyer
30
20+
10+
0
—104
14 (9,) (J-mol™) -
' —30+
— 40+
_50+
—60- + t >
120 180 240 300 360
6 (deg)
(b)
Vnu:.:n_'repufs."ma =V (90 3 dcg ) vnm:r._(n‘.f:racifma =V (180 o deg]
Vm“‘.f_‘_epu!‘_jfw =0.0296 kJ-mol ! Vmu;r_um_awm =-0.0591 kJ-mol !

The maximum of both the dipetiipole repulsion and attraction at 3.0 nm|dwarfedby a hydrogerbond|
that is typically 20 kJ mot at about 200 pm. However, the typical hydrogen bond length is much
shorter, so this may not be a fair comparison.

16:16



16.6(a) Here's a solution using MathCadrime 2 to perform the bivariable lineaodelregression fit
Data:

T
logA ::[7.36 8.37 8.30 7.47 7.25 6.73 8.52 T.87 7.53]

T
_|3.53 4.24 4.09 3.45 2.96 2.89 4.39 4.03 3.80

aW= 1.00 1.80 1.70 1.35 1.60 1.60 1.95 1.60 1.60

The function polyfitc withn = 1 performs thdinearfit. The function submatrix takes rows30and columns-@
of polyfitc.
Linear_Regression_Fit :=submatrix (pnlyﬁ tc (SW ,logA , 1 ] ,0,3,0, 2)

“Term”  “Coefficient” “Std Error”

. . . “Intercept” 3.59 0.543
Linear_Regression_Fit= “q» p 0.057 0.152
“B” 0.362 0.302

Thus, the linear fit is:
log A(S,W):=3.59+0.957-5+0.362- W
Value checkglive reasonald agreenentwith the data:
Value checks:  log_A(3.53,1 ] =T7.33 log A [2.89, 1.6):6.935

(b) For a group having the properti®s 4.84 and logA = 7.60, the linear structwactivity model of part (a)
requires the following value & if the group is to belong to the set of the data.

W 7.60-(3.59 0.95% 4.94
- 0.362

.
Clearly, he valueS= 4.84 is very much out of tHedata range as is the computed valugvgf-1.72) so we
expect that groupX, which haghese structure values, does tinearly correlate with this data s€o the
guestion becomes “Can we modify the model so that it meaningialudes the new gro®3 Let's try by
adding the crostermSxWto the linear model. Here’s the Prime 2 worksheet:

Linear_Regression_Fil :=submatrix {pulyﬁ te [SW JlogA ,“A B AB” ] ,0,4,0, 2]

“Term” “Coefficient” “Std Error”
“Intercept” 8.728 7.133
Linear_Regression_Fit = “A" —0.447 1.95
“p” —-2.711 4.265
“AB” 0.832 1.151

log A(S, W) :=8.728—-0.447.5-2.711-W+0.832.5.- W

Value checks:  log_A(3.53,1)="7.376 log_A(2.89,1.6)=6.946

This nonlinear structureactivity model seems to adequatdlyscribethe groups of part (a) so we now calculate
theW value, using a Mathcad Solve block, foratlis an outlier group in the linear model.

log A, S pair: log_A:=7.60 5:=4.84
g w=is
g
:
O
‘é[ log A=8.728—0.447.5—2.711.W +0.832.S . W
z
(&)
; -
§[ W :=Find (W)

W=0.787

This is close to the oth&¥ values and it is possible that the crtexsn has extended the applicability of the
model.
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