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The properties of gases

1A The perfect gas

Answers to discussion questions

The partial pressure of a gas in a mixture of gases is the pressure theulghexea if it
occupied alone the same container as the mixture at the same temperatuné Ralts a
limiting law because it holds exactly only under conditions wheregéses have no effect
upon each other. This can only be true in the limit of zero pressure where l&oeile® of
the gas are very far apart. Hence, Dalton’s law holds gxanty for a mixture of perfect
gases; for real gases, the law is only an approximation.

Solutions to exercises

The perfect gas law [1A.5] pV = nRT,implying that the pressure would be
nRT

\Y,
All quantities on the right are given to us excepwhich can be computed from the given
mass of Ar.

3 25¢g
39.95 g mol "

I 2 3 -1 -1
so  p= (0.626 mol)x (8.31x 10 Tg dbr:3r K™ mol™)x (30+273) K _ o —

So@, the sample would not exert a pressure of 2.0 bar.

- 0.626 mol

Boyle's law [1A.4a] applies.
pV = constant so piVi = piVi
Solve for the initial pressure:

. PV, (197 bar)x (2.14dnt)

i = = =|1.07 ba
I R rvrey (A
(ii) The original pressure in Torr is

( 1atm ) (760 Tom)
b =07 ban| 513 bad | Tam )~

The relation between pressure and temperature at constant volume can be derivbeé f
perfect gas lawpV = nRT[1A.5]
S0 pxT and h_B
T
The final pressure, then, ought to be

T
0 = bl _ (125 kPaX (11+ 273)K _

T (23+ 273)K

According to the perfect gas law [1.8], one can compute the ambgais from pressure,
temperature, and volume.

pV=nRT
=1 3
o noPV_ (1.00 atm) (1.013x 10°Pa atm') x (4.00x 10°m?) —166x1Gmol
RT (8.3145 J K'mol ™) x (20+ 273)K

Once this is done, the mass of the gas can be computed frormdlmtaand the molar
mass:

m= (1.66x 10°mol) x (16.04g mol ") = 2.67x 16°g =

The total pressure is the external pressure plus the hydrostaticrergssil], making he
total pressure


BP
강조 색

BP
강조 색


1A.6(b)

1A.7(b)

P=Pext+ pgh.
Let pex be the pressure at the top of the strawptite pressure on the surface of the liquid
(atmospheric pressure). Thus the pressure difference is
1kg (1em Y

10° g Ll(fz mJ
- [1.5x10°Pa| = 1.5x 107 atm

The pressure in the apparatus is given by
P = Pex+ pgh[1A.1]
wherepe = 760 Torr = 1 atm = 1.0:30° Pa,

and pgh=13.55gcm Ll@%} [i;r?n]

p=1.013x10° Pa+1.33x 10° Pa=1.146x 10° Pa =| 115 kP,

p-p,, = pgh=(L.0gcm ) x x (9.81 m $2) x (0.15m)

x 0.100 mx 9.806 m & =1.33x 10" Pa

Vo
T

All gases are perfect in the limit of zero pressure. Therefore the vah\g,/df extrapolated

to zero pressure will give the bestwalofR.

The molar mass can be introduced through

Rearrange the perfect gas equation [1A.5] to g‘wse% =

pV =nRT= N RT
M

which upon rearrangement givég = VmR_F;I' = ,oE

p

The best value off is obtained from an extrapolation pfp versusp to zero pressure; the
intercept iSV/RT.
Draw up the following table

platm (pPVau/T/(dn?® atm K mol™) | (plp)/(g dni® atni?)
0.750 000 0.082 0014 1.428 59
0.500 000 0.082 0227 1.428 22
0.250 000 0.082 0414 1.427 90

( pV.
From Figure A.1(a), R= Ilmk T ) |0 082 062 drhatm K" mol™

Figure 1A.1

(@)
0.08207

PV, /T =~7.999 x 10 +0.082062 :

.0B205 resevve e e iageoesee e evde e s b st vespses v s s o e e
0.08204
0.08203

(pVo/T)/(atm dm® mol~! K-

0.08200 : : : f f i i
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
platm




1A.8(b)

1A.9(b)

(b)

1.4288 : g :

plp=0.0013733p + 142755 |
1.4286 --meeeeeened ,.. ............. ............. ,. ......
L4284 o SRR SR S S 0l —
14282 eeeeraneers .. ............. .......... _ .............

1 A28 reeeevereesesbeneenesenrehoeeneeesee Bt seeefeene enne e v eene e e e e e e

(p/p)/(g atm™' dm~)

14278 oot b s N AU W S

1.4274 ; : E i i i i
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
platm

From Figure A.1(b), I|mo[%] =1.427 55 g dml atm*
P>

M =lim RT[%} = (0.082062 drft atm K™ mol™) x (27315 K) x (1.42755 g drfi atm™)
p—

=|31.9988 g mot

The value obtained fdR deviates from the accepted valiy 0.005 per cent, better than can
be expected from a linear extrapolation from three data points.

The mass densityis related to the molar volumé, by

v oYV, m M

n m n p

whereM is the molar mass. Putting this relation into the perfect gas law [{#&lSs

pVm =RT SO m =RT

P

Rearranging this result gives an expressionMoronce we know the molar mass, we can
divide by the molar mass of phosphorus atoms to determine the numbemsf @er gas
molecule.

RTp (8.3145 Pa fhmol ) x [(100+ 273) K] (0.6388 kg m°)

p 1.60x 10" Pa
0.124 kg mol' =124 g mol*

M =

The number of atoms per molecule is
124gmol”
310gmol”

suggesting adrmula offPJ.

=4.00

Use the perfect gas equation [1A.5] to compute the amount; then connersso

pV=nRT SO n:p—v
RT

We need the partial pressure of water, which is 53 per cent of the egmilibapour
pressure at the given temperature and standardypeegWe must look it up in a handbook
like the CRCor other resource such as the NIST Chemistry WebBook.)

p=(0.53)x (2.81x 10°Pa)= 1.49x 10°Pa
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1A.10(b)

1A.11(b)

1A.12(b)

1A.13(b)

a (1.49x 10° Pa)x (250 n?)
(8.3145 J K' mol™) x (23+273)K

and m= (151 mol)x (180 gmol ") = 2.72x 10° g=[2.72 kg

(i) The volume occupied by each gas is the same, since each completely fills theecontai
Thus solving folV we have (assuming a perfect gas, eqn. 1A.5)
V= n RT
P,
We have the pressure of neon, so we focus on it
Ny, = __02259 _ 1.115< 10 mol
20.18 g mol*
Thus

SO =151 mol

= 2 -1 -1
V=1.115><1(T molx 8.3145 Pa mK™ mol™ x 300 K=3,14><1(T3 m? =314 am

8.87x10° Pa
(i) The total pressure is determined from the total amount ofrgaskHA +n, + N
N, =209 __1 9665102 mol n, = —229__438,10° mol
« 16.04 g mol 39.95 g mol

n= (1.995+ 0.438+ 1.11§)x 102mol = 3.55x 10°2 mol

_ nRT _ 3.55x 10 molx 8.3145 Pa mK™ mol™ x 300 K
Vv 3.14x10° m?
—|2.82x 10 Pa =[28.2 kP4

and

This exercise uses the formuldj :p—F;T, which was developed and used in Exercis

1A.8(b). First the density must first be calculated.

335x10°g [10° cm®) s
_ x =0.134g dm
250cm L dm? ) g

(0.134g dm®) x (6236dm’ torr K mol™) x (298K) =
M= 152 torr =[164 g ol

This exercise is similar to Exercise 1.12(a) in that it uses the defirdfi absolute zero as
that temperature at which the volume of a sample of gas would become hereubstare
remained a gas at low temperatures. The solution uses the exjalifaenthat the volume
is a linear function of the Celsius temperature:

V=Vo+af  where V,=20.00dmanda=0.0741dm°C™".
At absolute zeroy = 0 =V, + a0

V 20.00 dm z
o) d(abszero)=--=———"""— - -Q70°C
( ) a 0.0741dni iC*

which is closdo the accepted value e273C.

(i) Mole fractions are

Xy = My [1A.9] me

total ) (25+ 15) m0|:
Similarly, x, =m

According to the perfect gas law
ProtV = NeiRT



n.RT (4.0 mol)x (0.08206 dm atm mol* K™) x (27315 K)
so —_tot " _ =|4.0 at
P == Y [4.0 atn]

(ii) The partial pressures are

P, = X B, = (0.63)x (4.0 atm)=
and p, = (0.37)x (4.0 atm)=

(i) p=p,+p[1A.10]=(25+15) atm=

Solutions to problems

1A.2  Solving forn from the perfect gas eqima [1A.5] yields n:g—\_l/_. From the definition of

molar massn :ﬁ, hencep = Vm: % Rearrangement yields the desired relation, namely
- ,RT
p - ID M "

Therefore, for ideal gasegz% and M =§TT. For real gases, find the zepeessure
P P

limit of P by plotting it againsp. Draw up the following tédb.
Yo

p/(kPa) 12.223 | 25.20] 36.97] 60.37] 85.23| 101.3
o(kgrd | 0.225 | 0.456] 0.664 | 1.062 | 1.468 | 1.734
_Plp | 543 | 553 557 | 568 | 581 | 584
10° m? s?

Bear in mind that 1 kPa = 1Rg m™* s
% is plotted in Figure A.2. A straight line fits the data rather well. The extrapolatigm¥d

yields an intercept of 54A0° m? s2. Then

M RT _ (8.3145 J K* mol™?) x (29815K)
5.40x10' m* s? 5.40x10'm?* s?
= 0.0459 kg mot* ={45.9g mol”
Figure 1A.2
59

plp=0.0461p +54.0

FR eeerererereerrne seserree e e sheee e e e e snnes shens nmns smnes snne bree et e nnnabenescenerarne e
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Comment. This method of the determination of the molar masses of gaseog®ueonds is
due to Cannizarro who presented it at the Karlsruhe Congress of 186@onference hh
been called to resolve the problem of the determination of the molar massessfaatd
molecules and the molecular formulas of compounds.

1A.4  The mass of displaced gasdg, whereV is the volume of the bulb analis the density of the
displaced gas. The balance condition for the two gases is

m(bulb) = pV(bulb) and  m(bulb) =pV(bulb)
pM

which implies thap = p”. Because [Problem 1.2} = RT

the balance condition gM =pM’,

which implies thatM’ = 5 x M

This relation is valid in the limit of zero pressure (@ogas behaving perfectly).
In experiment 1p = 423.22 Torrp’= 327.10 Torr;

hence M’ = 22322T0m 70.014 g mot* = 90.59 g mol™
327.10Torr

In experiment 2p = 427.22 Torrp’= 293.22 Torr;

hence M'= 42r.22Torr 70.014gmot* =102.0g mol*

29322 Torr
In a proper series of experiments one should reduce the pressure (e.g. kingadjes
balanced weight). Eperiment 2 is closer to zero pressure than experiment 1, so it is more
likely to be close to the true value:

|M’z1029m0'r1|

The molecules CHFCF; and CHRCHF, have molar mass of 102 g mbl

Comment. The substantial difference in molar mass between the two mgesought to
make us wary of confidently accepting the result of Experiment 2, evieis thie more likely
estimate.

1A.6 We assume that no,Hemains after the reaction has gone to completion. The balanced
equation is
N2 +3 |‘i2 -2 NH3 .
We can draw uphie following table

N, H, | NH3 Total
Initial amount | n n' 0 n+n
Final amount | n—3n" |0 n n+in
Specifically 0.33mol | 0 1.33 mol | 1.66 mol
Mole fraction | 0.20 0 0.80 1.00
( K )
o- n\F/QT: (1,66 mol)x L(0.08206 dm atr;zjz’ran )x (27315 K)) _[166at

p(Hz) =x(H)p=[

P(N,) =x(N,)p = 0.20x 1.66 atm
p(NH3) = x(NHz)p = 0.80x 1.66 atm
_

1A.8 The perfect gas law gV=nRT so n RT

At mid-latitudes

. B}
e (1.00atm)<{(1.00dn) x (250x 10°° cm) /10 cm dm'} _

(0.08206 dmiatm K'mol™) x (273K)

In the ozone hole

3 -
e (1.00atm)<{(1.00dn") x (100x 10° cm)/10cm dm'} _

(0.08206 dmatm K™'mol™) x (273 K)
The corresponding concentrations are
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1A.10

1A.12

1B.2

n_ 1.12x10° mol :|2.8>< 10° moldm’3|
V. (1.00dnf) x (40x10° m)x (10dm m*)

and n_ 4.46x 10 mol = |l.l>< 10° moldm’3|
V' (1.00dnf) x (40x10° m)x (10dm m*)

respectively.

The perfect gas laflA.5] can be rearranged to= g—\_ll_

The volumeof the ballooris V= %‘r:" = 4?” x (3.0 my =113m®

(1.0atm)x (113 x 10°dm®) —
a n= = _4.62x103 mol
@ (0.08206 drit atm mol® K1) x (298K)
The mass that the balloon can lift is the difference between the mass of disp
(b) Th hat the ball lift is the diff b h f disptazed

the mass of the balloon. We assume that the mass of the balloon isafiggsbati of the gas it
encloses:

m=m(H,) = NM(H,) = (4.62 x 10°mol) x (2.02g mol ) = 9.33x 10° g

Mass of dispaced air= (113 m®) x (1.22kg m °) = 1.38 x 10 kg
Therefore, the mass of the maximum paylzad

138 kg-9.33kg=

(c) For helium, m= nM(He) = (4.62 x 10’ mol) x (4.00g mol™*) = 18kg

The maximum payload is not38 kg—18kg=|1.2x 10° kg

Avogadro’s principle states that equal volumes of gases contaihaqaants (moles) of the
gases, so the volume mixing ratio is equal to the mole fraction.d€fieition of partial
pressuressi

Ps=XP.
The perfect gas law is

n,_ P, _%p

pvV=nRT so — =
V RT RT
CCLF 12
(@) n(CCl, ): (261x10™%) x (1.0atm) _ |1_1X 10n moldm'3|
\ (0.08206 driatm K'mol™) x (10+273) K
12
ang  MCCLF) _ (509x 10%) x (1.0atm) _[2.2x10 " moldn|
v (0.08206 dniatm K*mol™) x (10+ 273) K
n(CCI,F 12
) (CCLF) _ (261x10° )x_(lo.OEiE) atm) _ | 8.0x 105 mol dm_3|
v (0.08206dni atm K*mol™) x (200K)
12
and n(CCLF,) _ (509x 10™*?) x (0.050 atm) _ |1.6>< 102 moldm’3|
\ (0.08206 dniatm K'mol™) x (200K)

1B The kinetic model

Answers to discussion questions

The formula for the mean free path [eqn 1B.13] is

PELL

op
In a container of constant volume, the mean free path is directly pooptt temperature
and inversely proportional to pressure. The former dependence can be wrinfi
noting that the faster the molecules travel, the farther on avéraggad between collisions.
The latter also makes sense in that the lower the presbarkess frequent are collisions,
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and therefore the further the average distance between collisions. Pednagandamental
than either of these considerations are dependences on size. As pointetheuekt, the
ratio T/p is directly proportionald volume for a perfect gas, so the average distance
between collisions is directly proportional to the size of the containeinigoddset number

of gas molecules. Finally, the mean free path is inversely propalrtiorthe size of the
molecules as giveby the collision cross section (and therefore inversely proportioriaét
square of the molecules’ radius).

Solutions to exercises

1B.1(b) The mean speed is [1B.8]

_(8rT)"”
mean T M

The mean translational kinetic energy is
_ m( 3RT) 3KT
2

(E)=(xmv) =y m(V)= % mV = 2w jeedl-
The ratios of species 1 to speceat tie same temperature are
M [ M J and <Ek>1 =1
Vmean,z Ml < Ek >2
v 12
(l) mean,H, _ [&02\} _

\ 4.00

mean,Hg

(i) The mean translation kinetic energy is independent of molecular mass and
depends upon temperature alone! Consequently, because the mearicmahdtaetic
energy for a gas is proportional 19 the ratio of mean anslational kinetic energies for
gases at the same temperature always equals 1.

1B.2(b) The rootmeansquarespeed [1B3] is
(3rRT)"
Vrms = L
M

For CQ the molar mass is
M = (12.011 + 215.9994%10° kg mol™ = 44.01%10° kg mol™

 (3(8.3145 J K mol)(20+ 273) K\~
me 44.01x10° kg mol™

) 408 m s'

For He

 (3(8.3145 J K mol)(20+ 273) K) -

- ° : —[1.35x10° m s*|=[1.35 km §*
4.003x 10~ kg mol

1B.3(b) The MaxweII—BoItzmann distribution of speeflB.4] is

2 —Mv 12RT

3/2
f 4
V)= ”L TJ
and the fraction of molecules that have a speed betwaedv+dv is f(v)dv. The fraction of
molecules to have a speed in the range betwegandv; is, therefore,J'vz f(v)dv. If the

range is relatively small, however, such tf@) is nearly constant over that range, the
integral may be approximated Ey)Av, wheref(v) is evaluated anywhere within the range
and AV =V, —v; . Thus, we have, witM = 44.01&10°° kg mol™ [Exericse 1B.2(b)],

44.010< 10° kg mot
27(8.3145 J K' mol )(400

.[VVZ f(V)dvz f(V)Av= 471( K) (4025ms 3
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Xexp( _ (44.010x10° kg mol*)(402.5 m &)? ) < (405- 400) m &
L 2(8.3145 J K* mol™*)(400 K) )

= , just over 1%

1B.4(b) Themost probable, mean, and mean relative speeds are, respectively

(2rRT)” (8RT)" (8RT)"
Vmp = LvJ [189] Vmean = Lm) [188] Vrel = Lﬂ_ﬂ) [1BlOb]

The temperature i = (20+273) K = 293 K.

( 1 1 \\JJZ
o - L2(8.3145 J K mol™)(293 K)J g me

2x1.008x10° kg mol™*

( 1 1 \1/2
and v L8(8.3145 J K" molt)(293 K)J 7515 me

7(2x1.008x10° kg mol™)

For many purposes, air can be considered as a gas with an average mslaf 2869
mol™. In that case, the reduced molar mass [1B.10b] is

~ M,M,  (29.0 g mol')(2x1.008 g motl)
M, + M, (29.0+ 2x1.008) g mof*

( ) 1 \1/2
and 8(8.3145 J K" mol™)(293K)\ [ g1, 107 m s

V =
e L 7(1.88x 107 kg mol™?) J

Comment. One computes the average molar mass of air just as one computes the avera
molar mass of an isotopically mixed element, namely by takingvarage of the species
that have diffeent masses weighted by their abundances.

Comment. Note thatv,, andvpeanare very nearly equal. This is because the reduced mass
between two very dissimilar species is nearly equal to the mass oftitex Bgecies (in this
case, H).

. (8RT)" (8(8.3145 J K* mo*)(298 K)\ "~
1B.5(b v =10 nB.g)= ~[475m ¢]
®) 0 mean k ™ J [15.8] L 7(2x14.007x10° kg morl)J

(i) The mean free path [1B.13] is
S KT_ KT (1.38ix 102 J K™1)(298 K) . _LTorr
op zd’p x(395x10" m)y’(1x10° Torr) 133.3 Pe
—6.3x10" m|=[63 km|

The mean free path is much larger than the dimensions of the pumpingtappesed to
generate the very low pressure.
(iii) The collision frequency is related to the mean free path andveslaean speed by

U =1.88 g mot*

[1B.12]
v v 1/2
2= el gq z=-1° - __mean 1B 10a]
z A A
1/2 sl
, 25 M) [

6.3x10° m

1B.6(b) The collision diameter is related to the collision cross section by
o=d® so d = (o/2)"?= (0.36 nM¥n)**= 0.34 nm .
The mean free path [1B.13] is

PELL
op

Solve this expression for the pressure and sefual to 10:
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1B.7(b)

1B.2

1B.4

1B.6

23 =
kT (1. 3819x 102 JK™*)(293 KZ, _33x10° Jm® =
T oA 0.36x (10° m)*(10x 0.34x10° m)

Comment. This pressure works out to 33 bar (about 33 atm), conditions under which the
assumption of perfect gas behavior and kinetic model applicability atdegms to come
into question.

The mean free path [1B.13] is

_ kT (1.381x10%° J K*)(217 K)

op 0.43x(10° my(12.1x 10’ Pa atm)

Solutions to problems

The number of molecules that escape in unit time is the number per unihéimeauld have
collided with a wall section of are@ equal to the area of the small holhis quantity is
readily expressed in terms 4, the collision flux (collisions per untime with a unit area),
given in eqn 19A.6That is,

dN —Ap
— =LA
dt (22mkT)
wherep is the (constant) vapour pressure of the solid. The change in the numba&ecules
inside the cell in an intervaht is thereforeAN = -Z,, AAt, and so the mass loss is

12 12

[ m
Aw=maN==Ap| o 1) A=A geRT) M

Therefore, the vapour pressure of the substance in the cell is

_( AW) (ZﬂRT]M
P=aat M

For the vapour pressure of germanium

o 43x10°kg ) [ 27(8.3145 J K mol)(1273K))
L;r(O 50x 10" m)(7200 sj k 72.64x10° kg mol™*

= 7.3x10° Pa=

We proceed as in Justification 1BeXcept that, instead of taking a product of three- one
dimensional distributions in order to get the thdémensional distribution, we ake a product
of two onedimensional distributions.

f(v,.v,)dvdv, = f(v])f(v))dv,dv, = [2 nllTj g™ *Tdv,dv,
T

wherev’ = v¢ +v;. The probabilityf(v)dv that the molecules have a teémensional speed,

in the rangev to v + dv is the sum of the probabilities that it is in any of the area elements
dv,dvy in the circular shell of radiug The sum of the area elements is the area of the circular
shell of radius/ and thicknesslv which is z(v+dv)? — m# = 2mvdv . Therefore

mv2/2KT | _ ( M\ — Mv?/2RT M ~m
V= LkTJ T (RT)Y {F‘d

The mean speed is determined as
Voo = | VE(V)dv = L_ JJ vie ™ dy
Using integral G.3 from the ResourSection yields

(m) (2 (2|<T\3’2 |(2kTY?| | ZRTY
Vinean LkTJ \ J LZm L2m

The distribution [1B.4] is

10
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32
2 —MV2/2RT
j v'e .

f(v):47r[ M
27RT

The proportion of molecules with speeds less thayis

32
Vims _ Mv2
j J‘O Ve M2RT 4y,

P= jo f(v)dv= 47{2”RT

Defining a= R/ 2RT

(a)

\3/
P= 4”L7rJ J"“ vie *avzdv——4;rL”

Defining y* =av’. Then, &= a** ¢ an

( \3/2
P__ML:J da %j e dz}
ol 2] LAY e () 1 e

Then we usé¢he error function [Integral G.6]:
Vs 2 (a2 12
[ e dy= (7" 12)ri(v,,.a").

d rv.a"? 2 (dV a”z\ ) ]_( \

— el dy=| ™" |x(e™= g s

da’o d L da J ( k ”2)
where we have use% JO f(y)dy= f(2)
Substitutingand cancelling we obtaiR® = erf(v

V2 2 12 \5-avl
& )—(Zv a‘lr

NOW ' _(ﬂ\l& o _T\\uz M ]IIZ_(3\1/2
m= ("™ L m ) “lz2rt) TL2)

(13 v2
and Pzeﬁ[\EJ (ij - 0.92-0.31=0.61

Therefore
€)) 1-P= have a speed greater than the root mean square speed.
(b) P= of the molecules have a speed less than themeah square speed
(c) For the proportions in terms of the mean spggg, replacev,s by
V.= (8kT / 7zm)u2 = (8 / ?VZ')UZV . so Vimeard'2 = 2172
Then  P=erf(v,,,a"%) - (V2" 1 7 Jx (€ ™)

= erf (2 /;r”} (4/ 7)™ =0.889-0.356= 0.533

That is,53% of the molecules have a speed less than the meaf.7fitiave a speed greater
than the mean.

1B.8  The average isbtained by substituting the distribution (eqn 1B eqn 1B.7:

3

M n+2 — Mv2/2RT
< > I V' (v)dv = 47zL2 RTJ j Vv dv

For even values of, use Integral G.8:

(n+2)

A (MO (i 2rRT\ 2 (27RT) (R
< >_47Z'L27Z'RTJ 2{%‘} L MJ LTJ _(n+1)”LV

where (+1)II=1x3x5...x (n+1)

Thus <v”>1m: {(n+1)!![%}} evenn

—
NS
=2

_|
N—
it
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1B.10

1B.12

For odd values af, use Integral G.7:

(L—i_l\l n+3
(v)=4 (v 2 J'(ZRT\(7)_i(E\M
e O A I NN VIS T OV
Thus W:{g %\”} Bl 14

Question Show that these expressions reducg.tg,andv,,s for n= 1 and 2 respectively.

Dry atmospheric air i§8.08% N, 20.95% @, 0.93% Ar, 0.04% C¢) plus traces of other
gases. Nrogen,oxygen, and carbon dioxide contribute 99.06% of the molecules in a volume
with each molecule contributing an average rotational energy eql@l (binear molecules
can rotate in two dimensions, contributing two “quadratic termsdtational energy, okT
by the equipartition theorem [Topic B.3(bJJhe rotational energy density is given

_E, 0.9908N(s") 0.990aNKT

RV Y,

=0.9906(1.013 10° Pa)=1.004x 10° J m*® = 0.1004 J cn?
The total energy density ifranslational plus rotationavibrational energy contributing
negligibly):

P = Py + Ps =0.15J cn’+0.10 J cn?® = |0.25 J e’
The fraction of molecules (call i) between speedsandb is given by
Flab=[ fvadv
a

wheref(v) is given by eqn 1B.4This integral can be approximated by a sum over a discrete
set of velocity values. For convenience, let the velocitielse evenly spaced within the
interval such thatj,; = v; + Av:

F(ab)~) f(y)Av
On a spreadsheet or other mathematical software, make a column of watgity and then a
column forf(v) [1B.4] at 300 K and at 1000 K. Figur®& showsf(v) plotted againsv for
these two temperatures. Each curve is labeled with the numerical valui€, gind each is
shaded under the curitween the speeds of 100 and 200 mRa,b) is simply the area
under the curve between= a andv = b. One should take some care to avoid double counting
at the edges of the interval, that is, not including both endpoints ohtieval with full
weight. example, beginning the sum with the area under the curve at thess.dgsing a
spreadsheet that evaluaf@g at 5m s™intervals, and including points at both 100 and 200 m
s with half weight,F(100 m §', 200 m §') ~[0.281 at 300 K andD.066at 1000 K.

=0.9906p

Figure 1B.1
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1C.2

1C4

1C.1(b)

1C.2(b)

1C.3(b)

1C Real gases

Answers to discussion questions

The critical constants represent the state of a system at which the distimetieeen the
liquid and vapour phases disappears. We usually describe thifositoaisayinghat above
the critical temperature the liquid phase cannot be produced by the applichfiressure
alone. The liquid and vapour phases can no longer coexist, though sigatiituitds have
both liquid and vapour characteristics.

The van der Wda equation is a cubic equation in the voluMeEvery cubic equation has
some values of the coefficients for which the number of real rootepé®m three to one.
In fact, any equation of state of odd degree 1 can in principle account for critical
behavior because for equations of odd degre¥ there are necessarily some values of
temperature and pressure for which the number of real robtpadses fromto 1. That is,
the multiple values o¥ converge frorm to 1 as the temperature approaiige critical
temperature. This mathematical result is consistent with pafsinga two phase region
(more than one volume for a givérandp) to a one phase region (only ovidor a givenT
and p), and this corresponds to the observed experimentalt res the critical point is
reached.

Solutions to exercises

The van der Waals equation [1C.5a] is
p— DRT _am
V-nb V2
From Table 1C.3 for 8,a = 4.484 drfiatm mof* andb = 0.0434 drimol™.
0 _ (1.0 mol)x (0.08206 dr atm mol® K™) x (27315 K)
22414 dm — (1.0 mol)x (4.34x 10 dm® mol™)

2
 (4.484 dnfi atm mof®) x (1.0 mol _

(22.414 dri)?

iy p- (1.0mol)x (0.08206 dm atm mol* K™) x (500K)
0.150dnT — (1.0 mol) x (4.34x 10°dm® mol™)

1
_ (4.484 drﬁ(st;nS(rJn(cj)’rrﬁ)): (1.0 moly _ (2 sig. figures

The conversions needed are as follows:

1 atm =1.01810°Pa, 1 Pa=1kgths? 1dnf = (10" m)°=10°m®, 1 dni = 10° n?’.
Therefore,

1.013x10° kg m* s y 10° m°

a=1.32 atm drfi mol? x
1 atm dm®

= |1.34>< 10" kg nv s” mol’2|

10° m?

and b=0.0426 dmi mol™ x — = |4.26>< 10° m* mol™
m

The compression fact@ris [1C.1]
Vv pVv,
V. RT

(i) BecauseV, =V°+0.12V" = (112, we haveZ =[1.12
(ii) The molar volume is

13
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1C.4(b)

1C.5(b)

1C.6(b)

V= (L12V° = (1.12)x [ﬂj

_112)x { (0.08206 drf atm mol* K ) x (350 K)} _

12atm
SinceV,_>V° forces dominate.

(i) According to the perfect gas law

1 1
Voo RT _ (8.3145 JK' mol™) x (29815K) ( 1 dm\ _m
p (200 bar)x (10° Pa bar)

(ii) The van der Waalsgeiation [1C.5b] is a cubic equatlon\w;h. Cubic equations can be
solved analytically. However, this approach is cumbersome, so we prasded=xample
1C.1. The van der Waals equation is rearranged to the cubic form

RT) 2, (a) ~
U”_)V M.

RT\ (a) ab

or xg—Lb+ JX +L JX__: with  x = Vy/(dm® mol™) .
It will be convenient to have the pressure in atm:
200 bar —2M_ _ 1977 atm
1.013 bar

The coefficients in the equation are

(0.08206 dm atm mol* K™) x (298.15 K)
1974 atm

=(3.183x10%+0.123) dn? mol™* = 0.15%8 dn? mol™

a 1.360 dni atm mof?

b+ R—pT =(3.183x 10?2 dm® mol™) +

=6.89x10° dm® mol™

P 1974 am

2 2 3 -1
ab_ (1.360 dni atm mot )x_(3.183>< 10° dm’ mol™) _ 2 1B x10% drr mol®
p 1974 atm

Thus, the equation to be solvedx$— 0.158x* + (6.89x 10°)x - (2.198x10*) = 0.

Calculators and computer software for the solution of polynomials ardyreadilable. In
this case we find

x=0.112 and V., =[0.112dn? mol Y.

The perfecigas value is about 15 percent greater than the van der Waals result.

\Y/
The molar volme is obtained by solving = h [1C.2], forV,,, which yields

_ ZRT _ (0.86)x (0.08206 drfi atm mor1 K) x (300K)

\Y; =1.06 dn?® mol™
m p 20atm
()Then,  V=nV, =(82x10°mol)x (1.06 dnf mol*)=8.7x10°dm’ =

(ii) An approximate value d8 can be obtained from eqn 1C.3b by truncation of the series
expansion after the second tel®V,, in the series. Then,

( pV
BVLRT

1J —V_x(Z-1)

— (L.OB dn? mol?) x (0.86—1) = |—0.15 dni mol*|

Equations 1C.6are sad forb anda, respectively, and yield
b=VJ/3and a=2%°p.=3Vp..
Substituting the critical constants

-1
b= m = 49.3 cnf mol™ = 0.0493 drdl mol™

14



1C.7(b)

and a=3x(0.148 dri mol)? x (48.20atm)= 3.17 dnf atm mol”
But this problem is overdetermined. We have another piece of information
8a

°~ 27Rb
If we useT, along withV, as above, we would arrive at the same valugadbng with

_27RbT _ 9RVT,

-8 8

~9(0.08206 dm atm mot* K™)(0.148 dni mol™)(305.4 K)
- 8

=4.17 dnf atm mol?

Or we could usé. along withp.. In that case, we can solve the pair of equationa édb
by first setting the two expssions foa equal to each other:

27RDbT,

8
Solving the resulting equation foryields
_ RT, _(0.08206 dm atm mol* K™)(305.4 K)
“8p. 8(48.20 atm)

and then
a = 27(006499dn? mol%)?(48.20atm) =5.497dm" atm mol?
These results are summarized in the followindetab

a=270’p, =

=0.06499 dm mol™

Using a/dm’ atm mol*  b/dm’ mol™

Ve& pe 3.17 0.0493
V.& T, 417 0.0493
P& Te  5.497 0.06499

One way of selecting best values for these parameters would thketdghe mean of the
three determinations, namedy= [4.28 dm® atmmol{ andb = [0.0546 dnv® mol ™.

By interpretingb as the excluded volume of a mole of spherical molecules, we can obtain
an estimate of molecular size. The centres of spherical particles are excludedsfroenea
whose radius is the diameter of those spherical particles (i.e., twiceral@is); that
volume times the Avogadro constant is the molar excluded vdiume

(4r(2r)*) 1/ 3 )"
=N, |57 %0 =5 )

( V7
1( 3(0.0546 drit mol™) _139x10°dm=[0.139 1

2L4n(6 022x 10°° mol )J

The Boyle temperaturdg, is the temperature at which the virial coefficient 0. In order
to expresslg in terms ofa andb, the van der Waals equation [1C.5b] must be recast into
the form of the virial equation.

__RT _a
P= V. -b V2
Factoring outRT yields p- 1)1 2
v, Vv, |1-b/V, RTV,

So long a9/V,, < 1, the firstterm inside the brackets can be expanded using
(1) =1 +x+ X3+ ...,
which gives

o= e (b- 2 ) 2] ot |

M

We can now identify the second virial coefficientBs- b— %

15



At the Boyle temperature
27T
B=O=b—i SO TBzi:
RT, bR~ 8
(i) From Table 1C.3a = 4.484 drfiatm mol? andb = 0.0434 dmmol™. Therefore,

2
(4.484 dn? atm mot?) =[1259K

T =
B (0.08206 L atm mot K™) x (0.0434 dnmi mol™)

c

(ii) As in Exercise 1C.6(b),
by [(Are) i V7
A 3 J 2L47rNAJ

1( 3(00434 dri mort) )’

== =129x10° dm=1.29x10""m = [0.129 nn]
2 L 47(6.022x 107 morl)J

States that have the same reduced pressure, temperature, and v@whefd said to
correspond. The reduced pressure and temperature, far NO atm and 25°C are [Table

1C.8(b)
P__L10am _0h30 ang T =L =(227219K_ 534
717 1263K

b= E - 3354 atm

The corresponding states are
(i) For H,S (critical constants obtained frdddST Chemistry WebBopk
T=2.36(373.3K)

p = 0.030(89.7 atm)
(i) For CG
T=2.36(304.2 K)
p = 0.030(72.9 atm)
(iii) For Ar
T=2.36(150.7 K)
p = 0.030(48.0 atm)

The van der Waals equation [1C.5b] is
RT a
p= VE
V,-b V?
which can be solved fdr
RT__ 4.00x10* m*mol™ -

1C.2]

1C.9(b)

(8.3145 J K! mol™) x (288 K)
( 076m Pamol* )

4.0x10° Pa+
* L(4.00>< 10* m*mol™)?

b=V_-
a
P+y2

m

= |1.3>< 10 m® mol’l|
The compression factor is
pV (4.0x10° Pa)x (4.00x 10“* m* mol™)
Z=—="[1C.2]= = m
RT hc.2] (8.3145 J K* mol™) x (288K) -

Solutions to problems
From the definition o [1C.1] and the virial equation [1C.34,may be expressed in virial

1C.2
form as

( (
Z=1+B| —|+C| —]| +L
=148y |y )
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SinceV_ = R—pT (by assumption of approximate petfgas behavior)vi = R—p_l_; hence upon

substitution, and dropping terms beyond the second pom{e\%@)

Z= l+BL J+CLRTJ

=1+ (-217x10°dm’ mol™) x 100atm )
L(O 08206 dm atm mol* K™) x (273 K)J
100atm \2

+(1.200x10°®

dm® mol”
) L(O 08206 dm atm mof* K™) x (273 K)J
=1-0.0968+ 0.0239=

=(0. 927{5]
_ (0927 ((0.08206 dr igg i:tc;: K™)(273 K)} _

Question What is the value of obtained from the néxapproximation using the value @f,
just calculated? Which value dfis likely to be more accurate?

1C.4  SinceB'(Tg) = 0 at the Boyle temperature [Topic 1.38(T,) = a+ be®™ =0

1/2
1/2

. - ~(1131K?)
Solving forTg: T, = = :-5.0>< 16 E
g B B In(_a) | (—(—0.1993bar1 )j -

(0.2002bar" )

1C.6  From Table 1C.4T, = \3} {;‘i{) b, = [1_12} x @Z?}

2a \"? . . (120p)
28 be solved for from th and yield e .
(3bR) may be solved for from the expressionfigand yie SL = )

2) (12pb) (pV.)
e =2 2535

( 8) [ (40 atm)x (160x10° dn® mol™)) _
SJ L 0.08206 drft atm moi* K™

By interpretingb as the excluded volume of a mole of spherical molecules, we can obtain an
estimate of molecular size. The centres of spherical particles are excluded frorar@a sph
whose radius is the diameter of those spherical particles (i.e., twiceatieis); that volume
times the Avogadro constant is the molar excluded volume

210K

(4n(2r)?) 1/ 3 7 . 1 v, )7
b=N, 3 J o] rZEUmNA) [Exercise 1C'6(b)%5k4nNAJ

( 1 \1/3
_1f_ 160emmol® \ ;o0 15%em=[0.138 n

2 ( 47(6.022x 107 mol 1))

1C.8 Substitute the van der Waals equation [1C.5b] into the itlefinof the compression factor
[1C.2]
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Z= = - —2 _ [Exercise 1C.7(a
RT [ L b) RTV, [ (@)
v,
b) _.b.(b)
which upon expansion {ﬂ_WJ = 1+V—m+[v—m) +--- yields

2
z :l+(b—ajx L +1° 1 e
RT)\V, v,
We note that all terms beyond the second are necessarily positive, so only if
a _b (bY
> 4| — |+
RTV, V. W
canZ be less than one. If we ignore terms bey?/ﬂd, the conditions are simply stated as

m

Z<1 Wheni>b Z>1 Wheni<b
RT RT

ThusZ < 1 when attractive forces predominate and when there is insufficient tremergy
to disrupt those forces, a@d> 1 when size effects (shewnge repulsions) predominate.
1C.10 The Dieterici equation is
~a/RTV,
p= Re™ ™ [Table 1C.4]
V. -b

At the critical point the derivatives qf with respect toV,, equal zero along the isotherm
defined byT = T, . This means thaop/dV, ), =0 and (6*p/oV?), =0 at the critical point.

(op) _|aVv, —ab-RTV
Lav, ). =PIV, - byRT)

(azpj [ op ] {a\/ _ab- RT%} (-2aV; + 4V, ab+ RTY - 2 ab)
= m +
vz ) v )| V2V —BCRT) V2l (v, -B*(RD) ]}
Setting the Dieterici equation equal to the critical pressure and maléngvthderivatives
vanish at the critical point yields three equations:

RTe ¥F™
p=———

V.-b
and —2aV? + 4V ab+ RTV® - 2al’ =0
Solving the middle equation fdr, swbstitution of the result into the last equation, and solving
for V. yields the result
V.=2b or b=V./2

(The solutionV, = b is rejected because there is a singularity in the Dieterici equation at the

point V,, = b.) Substitution ofV, = 2b into the midle equation and solving fdr, gives the
result

and

aV,—ab- RTV?=0

T.=al4bR or a=2RT.V.
Substitution oV, = 2b andT, = a/ 4bRinto the first equation gives
B ae™ ~ ZRTCe_2

ST Y]
The equations fa¥,, T, p. are substituted into the equation for the critmamnpression factor
[1C.7] to give

PVe _ o2
Z =——<=2e%?=0.2707.
° RT

This is significantly lower than the critical compression factor that idigtel by the van der
Waals equation: Z (vdW)= pV_/RT =3/8=0.3750. Experimental values foZ  are
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summarized in TabldC.2 where it is seen that the Dieterici equation prediction is often
better.

1C.12 FI;VTm ~1+B'p+ CF+-- [1C.33]

P 1 B, C, ..
RT —1+V +V2+ [1C.3b]

m m

' B.,C
Thus Bp+Cpg+---= V_m+W+
Multiply through byV,, replacepV,, by RT{1+(B/V,, + ...}, and equate coefficients of
powers of 1V,

BPT+§EBIt£Eii+”¢:&_£@W

Vm Vm
. . B
Hence, B'RT= B, implying that| B’ = —
RT
2 2 2 ; C-PB’
Also  BBRT+CRT’=C=B+CRT, implying that|C' = ———
RT
(oV ) (V)
1C.14 Write V,=1(T, p); thendV_ L J dT+k o
0
p
Restricting the variations of and p to those which leav¥,, constant, that is\d, = 0, we
obtain
fov,)  (av) (3 _p ~ " (op)
o) "% )&, \av} a7l
From the equation of state
(ap)  RT 2(@+bT) V, RT+2(a+bT)
Lav vz V2
( ap\ R b RV +b
and — | =E—t—=
LaT R Vs V2
Substituting
(ov,) YA VRV +b) RVZ + bV,

\ a7 JP - (vaT+ 2@+om)| V2 )= V_RT+2(a+bT)
From the equation of state+ bT= pV,2 —RTV,

(ov ) RVZ + bV RV +b
Then L mJ — m 5 m — m m
or V_ RT+2pV. -2RTV  |2pV —-RT
Y,
1C.16 Z= V—“; [1C.1], whereV,,° = the molar volume of a perfect gas

m

From the given equation of state
V., = b+R—pT =b+V>
ForV,,=10b, we have lb=b + V,°, soV,° =D

Thenz =100 _|10_4 45
% |9

1C.18 The virial equation is

B C
V_ = RT 1+ —+—+---|[1C.3b
PV, T( v vz J[ ]

m m
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p_\/’“:1+E+£2+...
RT V. V

m m

or

\Y/
(a) If we assume that the series may be truncated aftd téwem, then a plot opr—_i_" VS Vi

will have B as its slope and 1 as itdntercept. Transforming the data gives
pMPa V. /(dm’mol™) (INy)/(mol dm®) pV/RT

0.4000 6.2208 0.1608 0.9976
0.5000 4.9736 0.2011 0.9970
0.6000 4.1423 0.2414 0.9964
0.8000 3.1031 0.3223 0.9952
1.000 2.4795 0.4033 0.9941
1500 1.6483 0.6067 0.9912
2.000 1.2328 0.8112 0.9885
2.500 0.98357 1.017 0.9858
3.000 0.81746 1.223 0.9832
4.000 0.60998 1.639 0.9782

Figure 1C.1(a)
1

| PVl RE = —0.01324/V,; +0.99948
: RP=05989 : 5 L
0995 o " SO S S STTPNS SO s

0975 4——————————————
] 0.2 0.4 0.6 0.8 1 12 14 1.6 L8

(1/V)imel dm™)
The data are plotted in Figur€l(a). Thedata fit a straight line reasonably well, and yhe
intercept is very close to 1. The regression yiadwé,—l.324<1(T2 dn? mol‘Ji.

(b) A quadratic function fits the data somewhat better (Fig@d(h)) with a slightly better
correlation coefficient andy-intercept closer to 1. This fit implies that truncation of the virial
series after the term wit@ is more accurate than after just BBegerm. The regression then
yields
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Figure 1C.1(b)
1
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PValRT

0085 | ............ ............ ............

098] e e

0.975 : : E i i i ; ;
0 02 04 06 08 1 12 14 16 18

(1/Va)(mol dm™)

B =11.503<1072 dm’® mol} and  C=}1.06<10"dn? mol?

1C.20 The perfect gas equation [1A.5] gives
RT (8 3145 J K* mol™)(250 K)

p 150x 10° Pa

The van der Waals equation [1C.5b] is a cubic equatidfirCubic equations can be solved
analytically. However, this approach is cumbersome, so we proceed asmpl&xaC.1. The
van der Waals equation is rearranged to the cubic form

Lb+ﬂ} La\v —a—b=0

VAERAL =0.0139 ni=13.9 dnf

or x3—Lb+TJx2+L%Jx—a—;=O with  x=V,/(dn® mol™®) .

It will be convenient to have the pressure in atm:
1latm

150 kPax ———— =1.481 atm
101.3 kPa

The coefficients in the equation are

1 -1
b+ﬂ- (5.42x 107 dn? mol?) + (0.08206 dm atm SnoT K™) x (250 K)
p 1.481 atm

=(5.42x107% +13.85) dn? mol™* =13.91 dn? mol™
a _ 6.260 dni atm mol®

- _ =4.23 dnf mol?
p 1.481 atm
2 2 3 1
a_b: (6.260 dni atm mof )><_(5.42>< 107 dm® mol™) 2261 % 102 drrf mol®
p 1.481 atm

Thus, the equation to be solvedx$—13.91x* + 4.2% - (2.291 x10?%) = 0.

Calculators and computer software for the solution of polyatsnare readily available. In
this case we find

x=13.6and V., =[13.6dm’ mol7.

Taking the van der Waals result to be more accurate, the error in the-gadectiue is
13.9-13.6

100%-= | 2%
136 7
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