Assume that all gases are perfect and that data refer to 298.15 K unless otherwise stated.

3 The Second and Third Laws

3A  Entropy

Answers to dscussion gquestions

3A.2 Everyday experience indicates that the direction of spontaneous change solaedi system is
accompanied by the dispersal of the total energy of the system. For exéonpl gas expanding freely
and spontaneously into a vacuum, the process is accompanied by a didpreadpand matter. It is
easy to calculate the increase in the thermodynamic entropy that accompamnipsotess. For a

V,
perfect gas this entropy change is given by the forndfta= anV—f [egn. 3A.14, which is clearly

|
positive if V; is greater thav;. The molecular interpretation of this thermodynamic result is based on
the identification of entropy with molecular disorder. An increasdisorder results from the chaotic
dispersal of matter and emyy and the only changes that can take place within an isolated system (the
universe) are those in which this kind of dispersal occurs iftérpretation of entropy in terms of
dispersal and disorder allows for a direct connection of taemibdynamic etropy to the statistical

entropy through the Boltzmann forme= KIn W, where W is the number of microstates, the
number of ways in which the molecules of the system can be arrangedkegping the total energy
constant. The concept tife number of microstates makes quantitative the medefihed qualitative
concepts of “disorder” and “the dispersal of matter and energy” used abowe ta ghysical feel for
the concept of entropy. A more “disorderly” distribution of energy andemedrresponds to a greater
number of microstates associated with the same total energy.

©
3A.4 The explanation of Trouton’s rule is the%:% is the standard entropy of vaporization, and we
b

expect a comparable change in volume (with an accompanying comparable chamgaumbler of
accessible microstates) whenever an unstructured liquid forms a vpwe, all unstructured liquids
can be expected to have similar entropies of vaporization. Liquidshihatsgnificant deviationfom
Trouton’s rule do so on account of strong molecular interactiongdhtitct molecular motion. As a
result there is a greater dispersal of matter and energy when such Vigpatize. Water is an example
of a liquid with strong intermolecular inttions (hydrogen bonding) which tend to organize the

molecules in the liquid, hence we expect its entropy of vaporization tebtegthar8s J KX mof?.

Solutions to &ercises

3A.1(b) All spontaneous processes are irreversible processes, whichsitipbegh eqn. 3A.12, the
Clausius inequality, thaAS,, =A§ +A §,,> 0, for all spntaneous processes. In tbase,

AS,, =10 JK* > 0, so the procegsiaybe spontaneous.

work performed_M_ 0.71 kJ 0.262. For an ideal

3A.2(b) Efficiency, n, is =1
heat absorbed ¢, 2.71kJ

Heatengine we havey

rev

T T
=1-—= [3A.10] = 0.262= +——— . Solving forT,, we
T, 273.16 K

obtain[T, = 201.6K| as the temperature of the organic liquid.
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3A.3(b) Assume that the block is so large that its temperature does nafechigmificantly as a result of the
heat transfer. Then

_ f dqrev _ 1 f qev
AS_J'i T [BA.2]= TL dg,, [constantT ¥ T
250x 16 J 256 10 J
(a)AS:m: 853 \] Kl (b)A S:m: 670\] Kl
3A.4(b) [CO,(g) will have the higher standard molar entropy, primarégduse\S,, andA §_are greater ~ for

COx(9).

3A.5(b) We use

:{ijssluw mof |rE%3= 0.482 JK

28.0 g/mol

AS= nRn (\\j—‘] [3A.14]

3A.6(b) Trouton’s rule in the formA,, .H © =T,x85J K mol *can be used to obtain
approximate enthalpies of vaporization. For cyclohexane

AgH® =(273.2+ 80.7)k 85 IR mait=] 30.1 ky/md)

3A.7(b) At 250 K, the entropy is equal to its entropy at 298 K pl$&swhere

dq C,,.dT T
oo [Be_ [Gal ¢ T
T T Cv,m T
1 1 1 ! 250 K
SO S=15484 J K" mol™ +[(20.786—-8.3145) J K" mol™] x In 298 K

S=(152.65 J K* mol’|

3A.8(b) No matter how the changecurredAS has the same value as if the change happened by reversible
heating at constant pressure (step 1) followed by reversible isoth@ymptession (step 2)

AS=AS +AS,
For the first step

d C dr T
AS;L =J‘ qrev — J‘ p.m =C In_f
T T P T

135+ 273) K _

25+ 273) K~ 83 K

AS = (2.00 mOI)x(%)x (83145JK mol 3 |

and for the second

qrev

ASZZJ%: T

V .
whereq,_, =-wW= I pdV = nRTInvf =nRT Inﬂ

i pf

50 AS, = NRIn - = (2.00mol)x (8.3145 J K* mol ) x In1508M_ 556 5
D 7.00 atm

AS=(183-256) JK'=|-7.3JK"*

3:2


BP
강조 색

BP
강조 색

BP
강조 색


The heat lost in step 2 was more than the heat gained in step 1, geisudtinet loss of entropy. Or
the ordering represented by confining the sample to a smaller volume in steprcame the
disordering represented by the temperature rise in stemégétive entropy change is allowed for a

system as long as an increase in entropy elsewhere resaf jn> 0.

3A.9(b) Since the masses are equal and the heat capacity is assumed constant, the &ratlitermpll be the
average bthe two initial temperatures,

T, :%(100 C+ 25 CkE 625 (
The heat capacity of each blockdss mC, whereC;is the specific heat capacity.
So,

AH (individual)=mCAT=100x 16  0449JK gx A 375K)+ 168

These two enthalpy changes add up to z

AS= mQIn(:Ir_—fj; 100 C= 3732K 25 G 298 2K 625€ 3357

] 3357)
AS = (10.0x 16 gk (0449JK ¢ % |Emj_ 532 JK

] 3357)
AS, = (10.0x 16 gk (0449JK ¢ 3 |E.37—32J_ 4753R
AS,y=A§+A §=[57 K]
AS(gas)= nR |{V—f] [3A.14} [iljx 83143k mol )i-00dm
3A.1000) (i) V 39.95gmol 1.20 drh

=5.873JK =| 5.9 JK
AS(surroundings¥ —A S (gas) [reversibl
AS(total) = [0]

(i) AS(gas): B is a state functiol
AS(surroundings} |§| [no change in surrounding
AS(total)9+5.9I K|

(i) g, =0 soAS(gas)=[0]
AS(surroundings¥ |§| [No heat is transfered to the surroundir

AS(total) = [0]

. AH  3527x106° Imol* -
3A.11(b) (i A S=—w& _ =2 =+10458J K™ =(104.6 JK*
() A, 8= e

b
(i)  If vaporization occurs reversibly, as is generally assumed

AS +AS, =0 so AS =|-104.6JK’

Comment. This calculation has been based on the assumption that the heat capeaonig@s r
constant over the range of temperatures involved and that the enthafpoadation at298.15 K

given in Table 3A.2 can be applied to the vaporization at 373.15 K. Neithef treseassumptions
are strictly valid. Therefore, the calculated value is only approximate.
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T AGH T AgH T
3A.12(b) AS = nC%(HZO,s)In?+ n_l‘j;+ n(;(HZO,I)In?+ A ng(HZO,g)In?
i fus i ap i
- 1508 _pg32mo
18.02 g mol
1 273.15 6.008 kJ/mof
AS =0.832 mok 38.02 JKY moftx K——""+ 0.832 mob—o 12
261.15 273.15 K
4 _1 373.15
+0.832 mok 75291 JK  motx da——
273.15
40.657 kd/mot 1 78.15
4+ 0.832 mok—— """ | 0.832mel 33.58 JK mdix n
373.15 K 373.15

AS=130.3 JK'

Comment. This calculation was based on the assumption that heat capacities were awestatite
range of temperatures involved. This assumption is not strictly valitherefore the calculated value
is only approximate.

Problems

3A.2 The Otto gcle is represented in Fig. 3.1. Assume one mole of air.

Figure 3A.1
P C

@ (%)
B D

(1)

77 _ ‘chycle [3A8]
10, |
W :W1+W3:AU1+AU3[q1:q3:0]:CV(TB—TA)+CV(TD —TC)

cycle

q,=AU, = Cv(Tc _TB)

:|TB_TA+TD _-E | :1_(TD_TAJ
|TC_TB‘ TC_TB

We know that

T (v,)" T (v.)"
_A:L_BJ and _D:(_C) [2E.24
T, \V, T. VY,
T T TT
SinceVg =VcandVa=Vp, 2=, or T, = A'C
T, T. T,

34
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T T V Ve
Then 77=1—B—=1——A0r77:1—(—5j
TC_TB TB VA

Given thatCyn = /2R, we haveCy, = ;R [2D.11] and ¢ = %

2/5
For x—*\:lon 1(110) =[0.47

B

AS =AS,=AS,,, = AS

surl sur,3

|§| [adiabatic reversible stef
AS, =C, InLT_CJ

Atconstantvolume( J (pCJ 50

AS, = (E)x (8.314JK* mol® k (In5 0)-

RN

D A
ASsur,4 = _AS4 =

3A.4 (a) As suggested, relate the work to the temperadepeendent coefficient of performance :

ko) _ CT _ ¢ [
|aiwf = =7 c| —dT
T-T
Integrating yields
w=c, Id_T LT'dT‘z TIn——(T -T)|= CLTInT T+T)

(b) The heat capacity i€, = (4.184 J K g ) x (250 g) = 1046 J K, so the work assiated with
cooling the water from 293 K to the freezing temperature is

W =1046 JK*x [293 KxIn 222K _ 293K+ 273 K\ =748
cooling 273 K )

The refrigerator must also remove the heat of fusion at the freezing temperaturthis isothermal
process, the coefficient of performance does notgdaso

la] AH ( T-T)
|vv|freeze ( T \ A L T J

C
T-T.

h c

250 g ( 293-273)

-6113J
18.0¢g mol® | 273 J

=6.008x 10° J mol™ x

The total work is
|\N1total - |\N|c00|ing + |\N|freeze: (748+ 6113 J = |686>< 103 J = 686 kb
At the rate of 100 W = 100 J'sthe refrigerator would freeze the water in

_686x103\] E

100J &
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3A.6 (a) Because entropy is a state functidg.S(I -»s,-5 C) may be determined indirectly from the
following cycle
H,0(1 0 C)—2=52=09 , Y O(s0C
AS T las
H,0(1-5 C)y—2e3259 , 1 O(s- 5 C
Thus A S(—>s-5C)=AS+A,SI->s0CKrA §

where AS=GC,, (I)Inl—_—f [3A.20; 6, =0 G 0=-5C]

and AS =C (s)lnl
S p.m -I—f

A§ +AS, =-AC, |nTl with AC =C_ (I)-C_ (s)=+37.3J K" mol™

f

-A, H
AS(I—>sT)= % [BA.17]

f

_AfusH T
ThUS, Atrss(l —> ST) = T—— ACp In ?

f f

AL S(1 -5 —5C)= 0% 18I mof 2723kt mof y 1020
273K 273
=|-21.3J K mof|
CALHT)
sur T

Ay H(T)=-AH, + A H(T,) - AH_

AH +AH =C (T, -T)+C_ (s)T-T,)=AC(T,-T)
AfusH (T) = AfusH(Tf ) - ACP(Tf _T)

— AfusH(T) — AfusH(Tf) +AC (T _Tf)

Thus, AS =
sur T T p
1 g—
_ 6.01kJ mot* | (3733K mol™) x ( 268-273)
T 268 K | ™ 268
=(+21.7 JK* mol*
AS,,=AS,, +AS=(217-213)J K2 molt=|4+04J K mol*

BecauseAS >0, the transitionl — s is spontaneous ab°C.

‘total

(b) A similar cycle and analysis can be set up for the transitiprid — vapourat 95 C. However,

since the transformation here is to the high temperature state (vamonrhe low temperature state
(liquid), which is the opposite of pa), we can expect that the analogous equations will occur with a
change of sign.

A S1—9,T)=A

trs

S1—g,T,)+AC, In_l_l

b

A H
= _1AC Inl, AC =-41.9 JK* mol*
T P T P

b b

40.7 kJ mot* ( 368)

A S(1—>g,T)= — (419 JK* mol*) x In| =—
w20 T =0 ( ) 373)

— +109.7 J K mot|
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s~ Al ALHT) AC(T-T)
sur T T T
= 1) -
_[-407kamot) o 5kt molt) « ( 368-373)
SEET T | 368

=|-111.2 J K mol]

AS,, =(1097-1112)J K* mol™* =|-1.5J K*mol™*

Since AS__ <0, the reverse transitiolg — |, is spontaneous at 95°C.

‘total

3A8 (a) q(total)= q(H,0)+ q(Cu) = 0,hence- q(H,0) = q(Cu)
q(H,0)=n(-A _H)+ nCp‘m(HZO,I) x (0—100°C)
where@is the final temperature of the water and copper.
g(Cu)=mC(#-0)=mC0, C_ =0.385JK'g"[Cs=Cyn/M]
Setting—q(H,0) =q(Cu) allows us to solve fof.
n(AvapH) - nCp,m(HZO, ) x (¢-100°C) = mC@
Solving for @ yields:
o (A, ,H+C, (HD,]) x100°C}
mC + nG, ,(H,O,1)
(.00 mol)x (40.656 10 Jmdk 75.3JC mol 100
2.00x 16 o 0.385J ¢ 4+ 1.00 mol 758J3'C mo
=57.00C= 330.2 K

q(Cu)= (2.00x 10°g) x (0.385J K* %) x (57.0K) = 4.39x 10¢ J =
q(H,0)=[=43.9k

AS(total)= AS(H,0) + AS(Cu)

vap

—nA,,,H T,
AS(HZO)=T— [3A.17]+ nG, | T [3A.20]
b i

__(1.00mol)x (40 656 10 IJmdl )
B 373 2K

+(1.00mol)x (75 3JK' mot ¥ |r(330 ZKJ

373 2K
=-1089JK - 922JK!' =|- 1181JKR

T
AS(Cu)=mC,In ?f =(2.00x10°g)x (0.385JK*g™*) x In(

3302 Kj
2732K

]

AS(total)= —1181 K™ +1459J K™ =
This process is spontaneous sinc&(surroundings (surroundings) is zero and, hence,
AS(universe)= AS(total)> 0
(b) The volume of the container may be calculated from the perfect gas law.
_NRT _ (1.00mol)x (0.08206 dmiatm K™ mol™) x (3732 K)
T p 1.00 atm

At 57°C the vapor pressure of water is 130 Tétarfdbook of Chemistry and Physi& edition).
The amount of water vapgresent at equilibrium is then

\Y =306 dn?
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3A.10

(130T0rr)x( Latm jx (30 6dr )

760Torr

n=1ry _ — =0.193mol
RT (0.08206dm atmK' mol 3 (330 2K)

This is a substantial fraction of the original amount of water andatdre ignored. Consequently the

calculation needs to be redone taking into account the fact that only a pafthe vapr condenses

into a liquid while the remainder (1.00 meh)) remains gaseous. The heat flow involving water, then,

becomes

qH,0)=-nA  H+nC  (HO)AT(H,0)
+(1.00mol-n)C_ (H,0,9)AT(H,0)
Becausa, depends on the equilibrium temperature through

n =1.00mok Ig_\'/l' wherep is thevapor pressure of water, we will have twoknowns f andT) in

the equatior-q(H,0) = g(Cu). There are two ways out of this dilemma: plnay be expressed as a

function of T by use of the Clapeyron equation, or (2) by use of successive approxisnaiedoing
the calculation yields:

. nA,H+nC,  (HOl)x100°C+(1.00-n)C, (H,0,9)x100°C
mC, + nCp,m(HZO, ) + (1.00- nl)Cp‘m(HZO,g)

With
n, = (1.00 mol)- (0.193mol)= 0.807 mol

(noting thatC, (H20,g) = 33.6 J mot K™ [Table 2C.3) 6= 47.2°C. At this temgrature, the vapor
pressure of water is 80.41 Torr, corresponding to

n, = (1.00 mol)- (0.123mol)= 0.877 mol
This leads tof = 50.8°C. The successive approximations eventually converge to vieldieof 6 =

|49.9 C= 323 1I* for the final temperature. (Ahis temperature, the vapor pressure is 0.123 bar.)

Using this value of the final temperature, the heat transferred andribas entropies are calculated as
in part (a).

q(Cu)=(2.00x 10°g) x (0.385J K g*) x (49.9K)= = —q(H,0)

ss(,0)= "2 v, i T
b i
AS(Cu)=mC,In I—f -

AS(total)= 1198 JK*+1292 JK* =

AS depends on only the initial and final states, so we cam@se nC, | In-_rl_—f [3A.20]

. q I’Rt )
Since =nC_(T.-T), T.=T + =T + =1tV = | °R{]
q p,m( f |) f i ncp’m i nCp’m [q ]
. [ 1?Rt )
Thatis, AS=nC__In| 1+
p.m nC T
pm i
Since n= &gl =7.87 mol
635 g mol

AS=(7.87 moljx (244 JK* mot 3 |E 1

= (192 JK* X (In127)=|+ 45.4 J R

(1.00 AY x (1000Q X (150 s
(7.87)x (244 JK* X (293K
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[1J=1AVs=1AQ 3]

For the second experiment, no change in state occurs for the copperASéomeper)= 0. However,
for the water, considered as a large heat sink

2 2
AS(water)= % _I’Rt_ (L0 AYx (10000 ) (150S) [0 3

T 293 K

3A.12Let us write Newton’s law of cooling as follows:

dT
— =-AT-T.
m (T-T))

WhereA s a constant characteristic of the systemByid the temperature of the surroundingsthe
negative sign appears because we as§umeés. Separating variables

dT
T-T
In(T —Tg) = — At+ K, whereK is a constant of integration.

Let T, be the initial temperature of the system wherD, then
K=In(T -T)
Introducing this expression fét gives

= —Adt, and integrating, we obtain

In(T_TSJ:—At orT=T+(T-T)e"

T
ﬁ:E CInI :E(CInT)
dt o T dt
From the above expression fdf we obtainInT =InT;— AtIn(T - T). Substituting Int we

das
obtain o = —CAIn('Ii' ~ )|, where nowT; can be interpreted as any temperafureduring the

course of the cooling process.

3B The measurement of entropy

Solutions to ercises

3B.1(b) UseS,=RIns, wheresis the number of orientations of about equal energy that the molecule can
adopt.

Draw up the following table:

nn 0 1 2 3 4 5 6
o m p a b ¢ o m p
s 1 6 6 6 3 6 6 2 6 6 3 6 1
S/R 0 1.8 1.8 1.8 1.1 1.8 1.8 0.7 18 18 11 18 O

whereais the 1,2,3 isomeh the 1,2,4 isomer, amclthe 1,3,5 isomer.
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A,S° =S%(zZn*,aq)+ S° (Cu,s)- ST (Zn,s)- S? (Cu™,aq)

r

3B.2(b) (i)
=[-1121+3315-4163+996]JK* mol* =|-21.0JK* mol*|

A,S° =125°(CO,,9)+11S2 (H,0,) - S2(C_H,,0,.,5)- 1252 (0,.g)
(ii) =[(12x 21374)+ (11x 69.91)— 3602 - (12x 20514) | J K™ mol*

~[+5120 K mol*

Solutions to poblems

TC,,,dT
3B.2 S ()= §1(0)+j —*—[3A19]
0
From the data, draw up the following table
T/K 10 15 20 25 30 50
%/ (3 K2mol ) 0.28 0.47 0.540 0.564 0.550 0.428
T/K 70 100 150 200 250 298
0.333 0.245 0.169 0.129 0.105 0.089

Com 2 1

Plot C,n / T againstT (Fig. 3B.1). This has been done on two scales. The region 0 to 10 K has been
constructed usin@,, = aT’, fitted to the point al = 10 K, at whichC,,, = 2.8 J K* mol', so

a=28x10°JK*mol™. The area can be determined (primitively) by counting squafeea A =
38.28 J K' mol™. Area B up to 0°C = 25.60 JKmol™; area B up t®5°C = 27.80 J K mol™

Hence

Figure 3B.1

DL oo

0.4 i

]
- mal

03 i

FTK

Com/T
ra

0 20 40 60 80 100 200 300
T/K

@) S, (273K)=S, (0)+|63.88J K*mol |

(b) S, (298K)=S, (0)+|66.08J K* mol*|

TC
0

dT
3B.4 S (T)=S,(0)+ J' —n 319
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Perform a graphical integration by plottirﬁqum /T againstT and determining the area under the

curve. Draw up the following table. (The last two columns come froermating areas under the
curves described below.)

T/K Com Con/T S-Sp(0)  Hp-HZ(0)
JK*mol? JK?Zmol? JK*mol™ kJ mol*
0.00 0.00 0.00 0.00 0.00
10.00 2.09 0.21 0.80 0.01
20.00 14.43 0.72 5.61 0.09
30.00 36.44 1.21 15.60 0.34
40.00 62.55 1.56 29.83 0.85
50.00 87.03 1.74 46.56 1.61
60.00 111.00 1.85 64.62 2.62
70.00 131.40 1.88 83.29 3.84
80.00 149.40 1.87 102.07 5.26
90.00 165.30 1.84 120.60 6.84
100.00 179.60 1.80 138.72 8.57
110.00 192.80 1.75 156.42 10.44
150.00 237.60 1.58 222.91 19.09
160.00 247.30 1.55 238.54 21.52
170.00 256.50 1.51 253.79 24.05
180.00 265.10 1.47 268.68 26.66
190.00 273.00 1.44 283.21 29.35
200.00 280.30 1.40 297.38 32.13

PlotC, » againstT (Fig. 38.2(a)). Extrapolate tol =0 usingCym = aT fitted to the point al = 10 K,
which givesa = 2.09 mJ K> mol™. Determine the area under the graph up to &aaid plotS, against
T (Fig. 38.2(b)).

Figure 3B.2
@
Fig. 3.3(a)
2.0
.
1.8 -
= 16 /./
£ 14 /
¢ 12
E 1.0
g o8 7
0.6
0.4 /
S/
0.2
0.0
0 50 100 150 200
TIK
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3B.6

(b)

Fig. 3.3(b)

300

250

200

150 //
100 /
50

[S(T)-S(0))/(J/K- mol)

TIK

The molar enthalpy is determined in a similar manner from a plo @fgainstT by determining the
area under the cuve (Fig. 34)

200K
H®(200K)- Hf(O)zJ C,,dT =|32.1 kJ mot
. ,

Figure 3B.3
Fig. 3.4

300

250 // /'/‘
S 200 =
é 150 ]
% 100 /

50 /

0 /

TIK

The entropy at 200 K is calculated from

200k C  dT
S, ©(200 K)= S, °(100 K)+J. Zem T

100 K T

The integrand may be evaluated at each of the data points; the transformed datdelppeaiThe
numerical integration can be carried out by a standard procedure such apdheitt rule (taking the
integral within any interval as the mean value of ihiegrand times the length of the interval).
Programs for performing this integration are readily availablepéosonal computers. Many graphing
calculators will also perform this numerical integration.

T/K 100 120 140 150 160 180 200
C_ /(QK'mol?) 2300 2374 2425 2444 2461 2489 2511
p,m

0230 0.1978 0.1732 0.1629 0.1538 0.1383 0.1256

C
—_I"_'m / (JK?mol™)

Integration by the trapezoid rule yields
Sme(200 K)=(29.79+16.81) JK' mol™* = |46.60 J K" mol™*
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3B.8 S=kIn WJalso see Exercises 3B.1(a) and (b)]
S=kIn4" = NkIn4
S0
=(5x10°) x (1.38x102°J K ") xIn4=59.57x 10 I K*
Question Is this a largeesidual entropy? The answer depends on what comparison is madealyMulti
the answer by Avogadro’s number to obtain the molar residual entropy18°76K ™ mol™, surely a
large number-but then DNA is a macromolecule. The residual entropy per mole of basenay be
a more reasonable quantity to compare to molar residual entropies of snealli@®l To obtain that
answer, divide the molecule’s entropy by the number of base paire bafdtiplying byNa. The
result is 11.5 J B mol™, a quantiy more in line with examples discussed in Exercises 3B.1(a) and (b).
3C Concentrating on the system
Answers todiscussion questions
3C.2  All of the thermodynamic properties of a system that we have encountkreld S, A andG can be
used as the criteria for the spontaneity of a process under specific conditiensriteria are derived
directly from the fundamental relation of thermodynamics which iscambination of the first and
second laws, namely
—-dU - p,dV + dw,, ., + TdS> C
The inequality sign gives the criteria for the spontaneity of a pspcthe equality gives the
criteria for equilibrium.
The specific conditions we are interested in and the critedd fillow from inserting these
conditions into the fundaental relation are the following:
(1) ConstantJ andV, no work at all
ds,, >0
(2) ConstanSandV, no work at all
dUg, <0
(3) Constant S and p, no work at all
dHg , <0
(4) ConstanfT
dA, <dw
(5) ConstanfT andV, only norpV work
dAf,V < deon-pV
(6) ConstanfT andV, no work at all
dA , <0
(7) ConstanfT andp, p = Pext
dGT,p < deon-pV
(8) ConstanfT andp, no nonpV work
dG; , <0
Exercises

Taking C, r, constant yields
S,°(200 K)= S °(100 K)+ C,n In (200 K /100 K)

= [29.79+ 24.44 In(200 /100 K)] J K mol™ = |46.60 J K* mol™
The difference is slight.
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A H® =AH®(Zn*,aq)- A,H°(Cu*,aq)

=-15389-64.77 kJ mot* = —21866 kJ mot*
A,G® =-21866kJ mol* — (29815K) x (-21.0J K™ mol™*) = |-212.40 kJ mot
(i) AH®=AH®=-5645kJmof

A,G® =-5645kJ mot* - (29815K) x (5120J K™ mol™*) = |-5798 kJ mof

3C.1b) ()

3C.2(b) CO(g)+ CH, CH, OH(l)~> CH, CH COOH(l
AH® =D wAH® - Y WAH®[2CH]

Products Reactants

=-510.7kImol' - { 277.69kJmdl ) —( 110 53kJ mol
=-122.5kJ mot*

AST= D v - ) v§I3B2

Products Reactants

=191.0JK" mol'- 160.7JK mol- 197 67JK mbd
=-167.4JK" mol*
AG® =AH®-TA S°
=-122.5kImol" - (298K¥ { 167.4JK mdl

=|-72.6 kImol*

3C.3(b) C,H,(9)+50,(g)— 3CO,(g)+4H,0O(I)
A,G® =3A,G°(CO,,g)+4A,G°(H,0,l) - A,G°(C,H,.g)-0
— 3(-39436 kJ mot*) + 4(—237.13kJ mot*) — 1(—2349 kJ mot*)
=-210811kJ mot*

The maximum norexpansion work i$210811kJ mol*| sincejw, | =|AG|

A G® =A.G®°(Zn*,aq)- A.G°(Cu*,a
3cAb) (a) . G7( q)-A,G7( q)

— _14706- 6549 kJ mot = |-212.55 kJ mot|

A,G® =12A,G®(CO,,9)+11A,G°(H,0,l) - A,G°(CH,,0,,,5)-12A,.G®(0,,9)

(b)
=[12x (-39436)+11x (-237.13)— (—1543)- 12x 0 |kJ mol* =|-5798 kJ mof'

Comment. In each case these valuesztorl’Ge agree closely with the calculated values in Exercise

3C.1(b).

3C.5b) The formation reaction of glycine is

2C(gr)+ O, (@) 5 N, (9) 3 H (9)> NH CH COOH(s

The combustion reaction is

NH,CH,COOH(s)- 4 O (g)> 2CQ (g} H O®5 N (¢
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AH =2AH® (CO, g} 2AH® (H,0,1-AH® (NH CH COOH(s;
A;H®(NH,CH,COOH(s))= 2,H® (CQ ,g} 2AH® (H O,BAH (N5 CH COOH(s))
=-2x393.51kJ mot+ J ¥ « 285.83 ki mbl-)- ( 969 kJ o
=-532.6 kJ mof
A;S° = §(NH,CH,COOH(s)- 2 § (C.o) § Q.03 5+ 8 (N .9)ox 3 (H ¢
=103.5JK' mol'~ X 5740JK md- (205.138JK mbl )
~2x191.61JK* mof' -2 (130.684JK mdl )
=-535.63JK* mot*
AG® =AH®-TA S°
=-532.6 kimoft — (298.15 K  535.63JK bl

- [Caraiamor

Solutions to poblems

3C.2 Begin with the partition funain of an oscillator [See Chapter]15
1 o, -
, X=—=hc\fB =ho,
1-¢* T s d

The molar internaénergy, molar entropy, and molar Helmholtz energy are obtained from tit®par
function as follows:

q:

~ N{é&q) w4 . 1 Niwe™ |Nho
U_U(O)__E(@JV__N(l_e )dﬂ(l—e V=T 1

s-U-YO), nRIng= Tkxe:x — NkIn(1-e™)
—€

X
e -1

A— A(0)= G- G(0)= —nRTIng=

The functionsare plotted in Fig. 3Q.

Im

—In(1- ex))
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Figure 3C.1

100 |

(L7 — U0)]/ N

A — A(D)]/ NkT

3D Combining the First and Second Laws

Answers todiscussion question

3D.2  The relation(6G/op), =V , eqn 3D.8, shows that the Gibbs function of a system increasep atith

constanfT in proportion to the magnitude of its volume. This makes good sense wheomsiders the
definition of G, which isG =U + pV - TS. HenceG is expected to increase within proportion toV

whenT is constant.

Solutions to &ercises

3D.1(b) AG-= nRTIn(%j [3D.14]= nRTIr(\\;—‘j [Boyle’s law]

I f

AG =(6.0x 10° mo)x( 8 314K mot)x( 298« |[1n5722j=

3D.2(b) (Z—?j =-S[3D.8], hence (%(_Blfj =-S5, and (ﬁj =—8

oT

AS=S- §- —(aa%jp{@a_ﬁjp:_(a@a; G)jp

—_[0AG) __0 (_ T
- (aT )p aT( 73.13 42837 )

[azsic]

3D.3(b) We will assume that the volume and molar volume of water changes ligttetley range of pressures
given and that, therefe, equation 3D.18hich applies to incompressible substances can be used to
solve this exercise. The change in Gibbs energy for this samplaigitien by

AG=nV,Ap[3D.13]= VA p
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3D.4(b)

3D.2

AG = (100 cni }{ x 400 kP& 40 Pa’m[+ 4(

3
i o)
In order to calculate the change in Gibbs energy per mole we calculate the matae vol
M 18.02 g mo11 10 m
p(densﬁy) 0.997 g ch o

=1.81x 10° ni mof then

AG, =V.Ap[3D.13]=1.8% 10° M mofx 400 kp)a%Pa 7.2Jm

AG, = RTIn (Efj =(8.314JK* mol*)x ( 500K x I’E

=|+2.88kJ mot*

100.0 kPi
50.0 kPa

Solutions to poblems

The GibbsHelmholtz equation [3D.9] may be recast into an analogous equatiowvimyohG and
AH , since
(oAG) (G} (0G)
Cor ) =lar) ~ar),
and AH = Hf -H
(5 AG®)  AH®
Thus’ ii ="
LaT T . T?
(AGe) [ °
L J:Li J dT[constant pressure]— dar
oT
(4G°) IT AMH® dT
)k
dar ( 1 ) °
~-AH I =AH® L?— J [A,H™ assumed constar
Therefore,ArG (T) G ( )~A He(l—i\
T T ' LT TCJ
AGe(M)=1a Ge(T)+(1—l AH®(T)
r T r C L T ) r c
and so ¢ ¢

= A G®(T.)+ (1- 7)A H®(T.) where 7= %

For the reaction
N,(9)+3H,(g) »> 2NH,(g) A Ge 2A GO(NHS,g)

@@  At500K, r=200_1¢78,
298

A,G®(500K)={(1.678 x 2 x (~16.45)+ (1-1.678) x 2 x (~46.11)}kJ mol*

SO
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3D.4

3D.6

(b)  At1000 K r=1900_3 356
208

A,G® (1000 K)={(3.356) x 2 x (~16.45)+ (1— 3.356 x 2 x (~46.11)}kJ mol*

=+107 kJ mot*

SO

(—S] —( j [Table 3D.1]

(a) For a van der Waals gas
nRT n? a_ RT a

“V-onb v? V,-b Vv?

Hence, (28) _[ap] = R
Vov/; LaT), |V ~b
(b) For a Dieterici gas
R-I—e—a/RTVm
p [
V,-b
R(1+ a J g ¥R
( as) (p) T
LaT V. -b

For an isothermal expansion,
"(2S) 4
AS = J- dS= I K@V)

SO we can simply compal{ 88) expressions for the three gases. For a perfect gas,

_RT_RT o (28) [@j _R
VARRVA v/ \aT), Vv,

(2—3) is certainly greater for a van der Waals gas than for a perfect gas, for the mboons
.

smaller for the van der Waals gas. To compare the van der Waals gas to ¢hieiDig$, we assume
that both have the same paramdter (That is reasonable, fdv is an excluded volume in both
equations of state.) In that case,

( a \ _a/RV.T

RL1+ Je m

(os) _ RV.T _(os)  lq,
Vo0 Vb "Vl TRV T

(( a)
o ¥RT

Now notice that the additional factor (ng—s) has the form (19€”, wherex > 0. This factor is

T ,Die
always lesshtan 1. Clearly (1§e™ < 1 for largex, for then the exponential dominates. But{E¥ <
1 even for smalk, as can be seen by using the power series expansion for the exponentigl—(1+

XC2+...) = 1-2 + ... So(ﬁj < (6—8) To summarize, for isothermal expansions:
6V T,Die av T, vdwW

Saw > AS,, and|AS,,, > AS

perfect

The comparison between a perfect gas and a Dieterici gas depends on particetaofvéle constants
aandb and on the physical conditions.

@ e[ m () H()
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(es) (op) _
(1) \ov J =|57) Maxwell relation]
( ) B ( ( )[Euler chain relatiorMathematical Background z

\%
T %” [reciprocal identity Mathematical Background?2]

e

T

BV)
a

B
EE
(%) (g_-lF-J [Maxwell relation]

|

ov

0
0
0
1
\Y
1
\Y,

(ﬂj - (GT) (55) [Euler chain} - [[aps]T [reciprocal]

op Jq 0S

First treat the numerator:
s = (6V) [Maxwell relation]= —aV
op ), oT

As for the denominator, at constant

d C dT
oo 7 (g, = o]

daS= [ 6Sj dT and dS=—"%=—-=
ar/, T T T

2,7

0S

Therefore (aT =— and

(ﬂ) _laTV
T

S/, | C

p

2) (2—2) = [2\1;] [Maxwell relation]

oS
_(%JS:W[EUIH cham]z( ) [reciprocal]
oT ), \ 8s ); ar
op _ GP] l)
aT ), ov ) \oT
= [Maxwell relation]z ————+——— [EuIer chain relatigr
(@) @) (LS) (ﬂJ)
ou \,\aT /), ouU/)\,\d
_(ﬂ (ﬂ
oT/)\o
=——" "~ " [reciprocal identity, twicel Gl (ﬂj =T
) () G| |Los),
op ) \aT )y
—(oT - (oY
®) (av)u & (a )V
_(2T) (oY
1,C, ‘(av)u(a )V (0V) ——=—[Euler chain relation]

ouU
op
= ( )[remprocal identityl p— T(a j [3D.6
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~——

(@] = ——1—[Euler chain]:L:l
T/, (ﬂ) [a\/] [av] .
v/ \ap), ).

Therefore, 1,C, = p— al

T

op
3D.8 =T| 22| - p[3D.6
r [aTjV p [3D.6]

A=—KTIn Q[Chapter 15] p=-— [aAJ = kT[aIn_Q}

oV oV
N
Q:q_ then p:N_kT(ﬂj

N! q LoV

Substitute this expression fprinto eqn. 3D.6 We obtain after differentiating with respect torl at

constanyV
- NkT2 ( 0 q]
T q oaT\aVv

3D.10 The GibbsHelmholtz equation is
9 (AG)  AH
oaT\T J T2
so for a small temperature change

AG®) AH® AG® AG® AH®
A[—'G J:' AT and G _AGT A AT

T T? T, T T2
AG® A HedT AGy" _AG,’ (1 1)
so jd r =_I r_I_2 and r—190 _ "r —220 +ArH6L___J
T190 T220 TlQO T220

T, T, )
AGH, =AGy 22 +AH® Ll 19°J
T220 220
For the monohydrate
(190K ( 190K)
A G® =(46.2kJ mol* 4 (A27kImott) x| 1-=——
Groo = ) 220K+ (1~ 20k)

A, G2, =|57.2kI mot*
For the dihydrate

A G2 =(69.4kJmol™) x N—K\ +(188kJ mot*) x 1— 190K}
“(2201) " “(* 220k)°

r —190

ArGlGQ}O_

For the trihydrate
190K) 190 K\

A G2 =(932kIJmol*) x| =—— | + (237 kI mol*) x 1——
r —190 ( L J ( ) L 220K

A,G2, =[112.8kJI mof
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Integrated activities

3.2

For a thorough discussion of the relationship between the thermmityand statistical definitions of
entropy, see Section 3A. We will not repeat all of that discussion hereilanterely summarize the
main points.

The thermodynamic entropy is defined in terms of the quadgty: %where dg,.,is the

infinitesimal quantity of energy supplied as heat to the system reveasialtemperature.

The statistical entropy is defined in terms of the Boltzmann formula éoenkropy: S = kin Wwhere

k is the Boltzmann constant and W is the number of microstates, theuotaer of ways in which the
molecules of the system can be arranged to achieve the same toggl @ntire system. These two
definitions turn out to be equivalent provided the thermodynamic entrdalea to be zero dt= 0.

The concept of the number of microstates makes quantitative-tiediiled qualitative concepts of
‘disorder’ and ‘dispersal of matter and energy’ that are used widetyrtmliicethe concept of

entropy: a more ‘disorderly’ distribution of energy and matter spords to a greater number of
microstates associated with the same totarggn The more molecules that can participate in the
distribution of energy, the more microstates there are for a given tetalyesind the greater the

entropy than when the energy is confined to a smaller number of molecules

The molecular interpretatio of entropy given by the Boltzmann formula also suggests the
thermodynamic definition. At high temperatures where the moleatfilassystem can occupy a large
number of available energy levels, a small additional transfer of energy asilheatise onlya small
change in the number of accessible energy levels, whereas at low tempehattrassfer of the same
guantity of heat will increase the number of accessible energy levels andstatiesosignificantly.
Hence, the change in entropy upon heatiilgbe greater when the energy is transferred to a cold body
than when it is transferred to a hot body. This argument suggestsetiddtathge in entropy should be
inversely proportional to the temperature at which the transfer tdkes ps in indicatedih the
thermodynamic definition.
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