
 

 
Assume that all gases are perfect and that data refer to 298.15 K unless otherwise stated. 

3 The Second and Third Laws 

3A   Entropy 
 

Answers to discussion questions 
    
3A.2 Everyday experience indicates that the direction of spontaneous change in an isolated system is 

accompanied by the dispersal of the total energy of the system. For example, for a gas expanding freely 
and spontaneously into a vacuum, the process is accompanied by a dispersal of energy and matter. It is 
easy to calculate the increase in the thermodynamic entropy that accompanies this process. For a 

perfect gas this entropy change is given by the formula f

i

ln
V

S nR
V

∆ = [eqn. 3A.14], which is clearly 

positive if Vf  is greater than Vi. The molecular interpretation of this thermodynamic result is based on 
the identification of entropy with molecular disorder. An increase in disorder results from the chaotic 
dispersal of matter and energy and the only changes that can take place within an isolated system (the 
universe) are those in which this kind of dispersal occurs. This interpretation of entropy in terms of 
dispersal and disorder allows for a direct connection of the thermodynamic entropy to the statistical 
entropy through the Boltzmann formula lnS k W= , where W is the number of microstates, the 
number of ways in which the molecules of the system can be arranged while keeping the total energy 
constant. The concept of the number of microstates makes quantitative the more ill-defined qualitative 
concepts of “disorder” and “the dispersal of matter and energy” used above to give a physical feel for 
the concept of entropy. A more “disorderly” distribution of energy and matter corresponds to a greater 
number of microstates associated with the same total energy. 

 

3A.4   The explanation of Trouton’s rule is that 
O

vap

b

H

T

∆
is the standard entropy of vaporization, and we 

expect a comparable change in volume (with an accompanying comparable change in the number of 
accessible microstates) whenever an unstructured liquid forms a vapor. Hence, all unstructured liquids 
can be expected to have similar entropies of vaporization. Liquids that show significant deviations from 
Trouton’s rule do so on account of strong molecular interactions that restrict molecular motion. As a 
result there is a greater dispersal of matter and energy when such liquids vaporize. Water is an example 
of a liquid with strong intermolecular interactions (hydrogen bonding) which tend to organize the 

molecules in the liquid, hence we expect its entropy of vaporization to be greater than 1 185 J K  mol− − . 

 
 

Solutions to exercises 
 
3A.1(b) All spontaneous processes are irreversible processes, which implies through eqn. 3A.12, the 

Clausius inequality, that tot sys surr 0S S S∆ = ∆ + ∆ > , for all spontaneous processes. In this case,  
1

tot 10 J K 0S −∆ = > , so the process may be spontaneous. 

 

3A.2(b) Efficiency, η, is 
h

work performed 0.71 kJ
0.262

heat absorbed 2.71 kJ

w

q
= = = . For an ideal  

 Heat engine we have c c
rev

h

1  [3A.10] 0.262 1
273.16 K

T T

T
η = − = = − . Solving for Tc, we 

  obtain Tc = 201.6 K as the temperature of the organic liquid. 
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3A.3(b) Assume that the block is so large that its temperature does not change significantly as a result of the 
heat transfer. Then  

f f
rev rev

revi
i

d 1 [3A.2] d [constant ]
q q

S q T
T T T

∆ = = =∫∫  

(a)
3 3

1 1250 10 J 250 10 J
853 J K (b) 670J K

293 15K 373 15K
S S− −× ×

∆ = = ∆ = =
. .

 

 
3A.4(b) CO2(g) will have the higher standard molar entropy, primarily because fus vap and S S∆ ∆ are   greater for 

CO2(g). 
 
3A.5(b) We use 

  

f

i

1 1 1

ln  [3A.14]

4.00 g 750
    8.314 J K  mol ln 0.482 J K

28.0 g/mol 500

V
S nR

V

− − −

 
∆ =  

 
   = × × =   

  

 

  
3A.6(b) Trouton’s rule in the form O 1 1

vap b J K mol85  H T − −∆ = × can be used to obtain  

 approximate enthalpies of vaporization. For cyclohexane  

  O 1
vap

1 1(273.2 80.7)K 85 J K  mol 30.1 kJ/molH −− −∆ = + × =  

 

3A.7(b) At 250 K, the entropy is equal to its entropy at 298 K plus  ∆S  where  

  
  
∆S =

dq
rev

T∫ =
C

V ,m
dT

T∫ = C
V ,m

ln
T

f

T
i

 

so 
  
S = 154.84 J K−1 mol−1 + [(20.786− 8.3145) J K−1 mol−1] × ln

250 K

298 K
 

   S = 152.65 J K−1 mol−1  

 

3A.8(b) No matter how the change occurred, ∆S  has the same value as if the change happened by reversible 
heating at constant pressure (step 1) followed by reversible isothermal compression (step 2)  
 

  
∆S = ∆S

1
+ ∆S

2
 

For the first step 

 
  
∆S

1
=

dq
rev

T∫ =
C

p,m
dT

T∫ = C
p,m

ln
T

f

T
i

 

 ( ) 1 1 1
1

(135 273) K7(2 00mol) (8 3145 J K  mol ) ln 18 3 J K
2 (25 273) K

S − − −+
∆ = . × × . × = .

+
 

and for the second 

 
  
∆S

2
=

dq
rev

T∫ =
q

rev

T
 

where 
  
q

rev
= −w = pdV∫ = nRTln

V
f

V
i

= nRT ln
p

i

p
f

  

so 
  
∆S

2
= nRln

p
i

p
f

= (2.00mol)× (8.3145 J K−1 mol−1) × ln 1.50 atm
7.00 atm

= −25.6 J K−1   

   ∆S = (18.3− 25.6) J K−1 = −7.3 J K−1  
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The heat lost in step 2 was more than the heat gained in step 1, resulting in a net loss of entropy. Or 
the ordering represented by confining the sample to a smaller volume in step 2 overcame the 
disordering represented by the temperature rise in step 1. A negative entropy change is allowed for a 
system as long as an increase in entropy elsewhere results in 

  
∆S

total
> 0 . 

  

3A.9(b) Since the masses are equal and the heat capacity is assumed constant, the final temperature will be the 
average of the two initial temperatures, 

 f

1
(100 C 25 C) 62 5 C

2
T = + = .    

The heat capacity of each block is C = mCs where Cs is the specific heat capacity. 
So,  

 3 1 1
s(individual) 10 0 10 g 0 449J K g ( 37.5K) 168kJH mC T − −∆ = ∆ = . × × . × ± = ±  

These two enthalpy changes add up to zero:  
  
∆H

tot
= 0  

 f
s

i

ln ; 100 C 373 2K 25 C 298 2K 62 5 C 335 7 K
T

S mC
T

 
∆ = = . ; = . ; . = . 

 

   

 3 1 1 1
1

335 7
(10 0 10 g) (0 449J K g ) ln 532J K

298 2
S − − −. ∆ = . × × . × = . 

 

 3 1 1 1
2

335 7
(10 0 10 g) (0 449J K g ) ln 475J K

373 2
S − − −. ∆ = . × × . × = − . 

 

 1
total 1 2 57 J KS S S −∆ = ∆ + ∆ =  

   

3A.10(b)  (i) 

3
1 1f

1 3
i

1 1

21g 4.60 dm
(gas)  ln [3A.14] (8 314J K mol ) ln

39 95g mol 1.20 dm

5.873 J K 5.9 J K

V
S nR

V
− −

−

− −

   
∆ = = × .   .  

= =

  

 1(surroundings) (gas) 5.9J K  [reversible] S S −∆ = −∆ = −  

   ∆S(total)= 0  

(ii ) 1(gas) 5.9J K  [  is a state function] S S−∆ = +  

   ∆S(surroundings)= 0  [no change in surroundings] 

 1(total)= 5.9J KS −∆ +  

(iii ) 
  
q

rev
= 0  so  ∆S(gas)= 0  

   ∆S(surroundings)= 0 [No heat is transfered to the surroundings] 

   ∆S(total) = 0  

           

3A.11(b) (i) 
  
∆

vap
S =

∆
vap

H

T
b

= 35.27× 103 J mol−1

(64.1+ 273.15) K
= +104.58J K−1 = 104.6J K−1  

(ii ) If vaporization occurs reversibly, as is generally assumed  

  
  
∆S

sys
+ ∆S

sur
= 0 so ∆S

sur
= −104.6J K−1  

 
 Comment. This calculation has been based on the assumption that the heat capacities remain 
 constant over the range of temperatures involved and that the enthalpy of vaporization at  298.15 K 
  given in Table 3A.2 can be applied to the vaporization at 373.15 K. Neither one of these  assumptions 
 are strictly valid. Therefore, the calculated value is only approximate. 
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3A.12(b) vapfusf f f
p 2 p 2 p 2

i fus i vap i

(H O,s)ln (H O,l)ln (H O,g)ln
HHT T T

S nC n nC n nC
T T T T T

∆∆
∆ = + + + +  

                    

 
1

15.0 g
0.832 mol

18.02 g mol
n −= =  

 

 

1

1

6.008 kJ/mol1 10.832 mol 38.02 J K  mol ln 0.832 mol
273.15 K

1 1       0.832 mol 75.291 J K  mol ln

40.657 kJ/mol 1 1       0.832 mol 0.832 mol 33.58 J K  mol l
373.15 K

273.15

261.15
373.15

273.15

S
−

−

− −∆ = × × + ×

− −+ × ×

− −+ × + × × n
378.15

373.15

 

 

  1130.3 J KS −∆ =  
 
 Comment. This calculation was based on the assumption that heat capacities were constant over  the 
 range of temperatures involved. This assumption is not strictly valid.  Therefore the calculated value 
 is only approximate. 
 
 
Problems 
 

3A.2 The Otto cycle is represented in Fig. 3.1. Assume one mole of air.  
 

Figure 3A.1 

 
 

 cycle

2

w

q
η

| |
=

| |
 [3A.8] 

 
  
w

cycle
= w

1
+ w

3
= ∆U

1
+ ∆U

3
[q

1
= q

3
= 0] = C

V
(T

B
− T

A
) + C

V
(T

D
− T

C
)  

 
  
q

2
= ∆U

2
= C

V
(T

C
− T

B
)  

 B A D C D A

C B C B

1
T T T T T T

T T T T
η

| − + − | − = = −  | − | − 
 

We know that 

 

  

T
A

T
B

=
1/c

V
B

V
A







and

T
D

T
C

=
1/c

V
C

V
D







 [2E.2a] 

Since VB = VC and VA = VD, 
  

T
A

T
B

=
T

D

T
C

,  or 
  
T

D
=

T
A
T

C

T
B
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Then 

A C
A

B A

C B B

1 1

T T
T

T T
T T T

η
−

= − = −
−

 or 
1

B

A

1
c

V
V

η
/

 = −  
 

 

Given that Cp,m = 7/2R, we have CV,m = 5/2R [2D.11] and 
  
c = 2

5
 

For ( )2 5
A

B

110,  1 0.47
10

V
V

η
/

= = − =  

 
  
∆S

1
= ∆S

3
= ∆S

sur,1 = ∆S
sur,3 = 0 [adiabatic reversible steps] 

 

  

∆S
2

= C
V ,m ln

T
C

T
B







 

At constant volume 

  

T
C

T
B







=

p
C

p
B







= 5.0   

 ( ) 1 1 1
2

5 (8 314J K mol ) (ln 5 0) +33J K
2

S − − −∆ = × . × . =  

 
  
∆S

sur,2
= −∆S

2
= −33J K−1  

 

  

∆S
4

= −∆S
2

T
C

T
D

=
T

B

T
A









 = −33J K−1  

 
  
∆S

sur,4
= −∆S

4
= +33J K−1  

 
 
 

3A.4 (a) As suggested, relate the work to the temperature-dependent coefficient of performance : 

  

  

dw =
dq

c

c
=

C
p
dT

T

T
h

− T








= C
p

T
h
dT

T
− dT  

Integrating yields 

 

  

w = C
p

T
h

dT

TTi

Tf

∫ + dT
Ti

Tf

∫ = C
p

T
h

ln
T

f

T
i

− (T
f

− T
i
) = C

p
T

h
ln

T
i

T
f

− T
i
+ T

f







 

(b) The heat capacity is Cp = (4.184 J K–1 g–1) × (250 g) = 1046 J K–1, so the work associated with 
cooling the water from 293 K to the freezing temperature is 

 
  
w

cooling
= 1046 J K−1 × 293 K× ln

293 K

273 K
− 293 K+ 273 K







= 748 J 

The refrigerator must also remove the heat of fusion at the freezing temperature.  For this isothermal 
process, the coefficient of performance does not change, so 

 

  

w
freeze

=
q

c

c
=

∆
fus

H

T
c

T
h

− T
c








= ∆
fus

H
T

h
− T

c

T
c








= 6.008× 103  J mol−1 ×
250 g

18.0 g mol−1
×

293− 273

273







= 6113 J

 

The total work is 

 
  
w

total
= w

cooling
+ w

freeze
= (748+ 6113) J = 6.86× 103  J = 6.86 kJ 

At the rate of 100 W = 100 J s–1, the refrigerator would freeze the water in 

 
  
t =

6.86× 103  J

100 J s−1
= 68.6 s 
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3A.6 (a) Because entropy is a state function trs (l s 5 C)S∆ → ,−   may be determined indirectly from the 

following cycle  

 

trs

trs

(l s,0 C)
2 2

1 s

(l s, 5 C)
2 2

  H O(1 0 C)    H O(s 0 C)

                                           

H O(1 5 C) H O(s 5 C)

S

S

S S

∆ → °

∆ → − °

, → ,

∆ ↑ ↓ ∆

,− → ,−

 

 

 

Thus trstrs l s(l s 5 C) (l s 0 C)S S S S∆ → , − = ∆ + ∆ → , + ∆  , 

where f
l m f(l) ln [3A.20;  0 C  5 C]p

T
S C

T
θ θ,∆ = = , = −   

and 
  
∆S

s
= C

p,m(s) ln
T

T
f

 

 
  
∆S

l
+ ∆S

s
= −∆C

p
ln

T

T
f

with ∆C
p

= C
p,m(l) − C

p,m(s)= +37.3J K−1 mol−1  

 
  
∆

trs
S(l → s,T

f
) =

−∆
fus

H

T
f

 [3A.17] 

Thus, 
  
∆

trs
S(l → s,T) =

−∆
fus

H

T
f

− ∆C
p

ln
T

T
f

 

 

3 1
1 1

trs

-1 -1

6 01 10 J mol 268
(l s 5 C) (37 3J K  mol ) ln

273 K 273

21.3J K  mol

S
−

− −− . ×
∆ → ,− ° = − . ×

= −
 

 
  
∆S

sur
=

∆
fus

H (T)

T
 

 
  
∆

fus
H (T) = −∆H

l
+ ∆

fus
H (T

f
) − ∆H

s
 

 
  
∆H

l
+ ∆H

s
= C

p,m(l)(T
f

− T) + C
p,m(s)(T − T

f
) = ∆C

p
(T

f
− T)  

 
  
∆

fus
H (T) = ∆

fus
H (T

f
) − ∆C

p
(T

f
− T)  

Thus, 
  
∆S

sur
=

∆
fus

H (T)

T
=

∆
fus

H (T
f
)

T
+ ∆C

p

(T − T
f
)

T
 

 

  

∆S
sur

=
6.01kJ mol−1

268 K
+ (37.3J K−1 mol−1) ×

268− 273

268







= +21.7 J K-1 mol-1
  

  
∆S

total
= ∆S

sur
+ ∆S = (21.7 − 21.3)J K−1 mol−1 = +0.4J K−1 mol−1   

Because 
  
∆S

total
> 0 , the transition  l → s  is spontaneous at –5°C. 

(b) A similar cycle and analysis can be set up for the transition  liquid → vapourat 95 C . However, 

since the transformation here is to the high temperature state (vapour) from the low temperature state 
(liquid), which is the opposite of part (a), we can expect that the analogous equations will occur with a 
change of sign.  

 

  

∆
trs

S(1→ g, T) = ∆
trs

S(1→ g, T
b
) + ∆C

p
ln

T

T
b

=
∆

vap
H

T
b

+ ∆C
p

ln
T

T
b

, ∆C
p
= − 41.9 J K-1 mol-1

 

 

  

∆
trs

S(1→ g, T) =
40.7 kJ mol−1

373 K
− (41.9 J K−1 mol−1) × ln

368

373







= +109.7 J K-1 mol-1
 

 
3:6 



 

 

  

∆S
sur

=
−∆

vap
H (T)

T
= −

∆
vap

H (T
b
)

T
−

∆C
p
(T − T

b
)

T

=
−40.7 kJ mol−1

368 K







− (−41.9 J K−1 mol−1) ×

368− 373

368







= −111.2 J K-1 mol-1

 

 
  
∆S

total
= (109.7 − 111.2)J K−1 mol−1 = −1.5J K−1 mol−1  

 Since 
  
∆S

total
< 0 , the reverse transition,  g → l , is spontaneous at 95°C.  

 

3A.8 (a) 
  
q(total)= q(H

2
O) + q(Cu)= 0, hence− q(H

2
O) = q(Cu)  

 
  
q(H

2
O) = n(−∆

vap
H ) + nC

p,m(H
2
O, l) × (θ − 100°C)  

where θ is the final temperature of the water  and copper. 

 
  
q(Cu)= mC

s
(θ − 0) = mC

s
θ, C

s
= 0.385J K−1g−1 [Cs = Cp,m/M] 

Setting –q(H2O) = q(Cu) allows us to solve for θ. 

 
  
n(∆

vap
H ) − nC

p,m(H
2
O, l) × (θ − 100°C) = mC

s
θ  

Solving for θ  yields: 

 

vap m 2

s m 2

3 1 1 1

3 1 1 1 1

{ (H O l) 100 C}

(H O l)

(1.00 mol) (40.656 10  J mol 75.3 J C  mol 100 C)

2.00 10  g 0.385 J C  g 1.00 mol 75.3 J C  mol

57.0 C 330.2 K

p

p

n H C

mC nC
θ ,

,

− − −

− − − −

∆ + , × °
=

+ ,

× × + ° × °
=

× × ° + × °
= ° =

 

   q(Cu)= (2.00× 103 g) × (0.385J K−1 g−1) × (57.0 K)= 4.39× 104 J = 43.9 kJ  

 ( )2H O 43.9 kJq = −  

 
  
∆S(total)= ∆S(H

2
O) + ∆S(Cu)  

 

vap f
2 m

b i

3 1

1 1

1 1 1

(H O)  [3A.17] ln  [3A.20]

(1 00mol) (40 656 10 J mol )
373 2K

330 2K
(1 00mol) (75 3J K mol ) ln  

373 2K

108 9J K 9 22J K 118.1J K

p

n H T
S nC

T T,

−

− −

− − −

− ∆  ∆ = +  
 

. × . ×
= −

.

. + . × . ×  . 

= − . − . = −

 

  

∆S(Cu)= mC
s
ln

T
f

T
i

= (2.00× 103 g) × (0.385J K−1 g−1) × ln
330.2 K
273.2 K







= 145.9J K−1

 
  
∆S(total)= −118.1J K−1 + 145.9J K−1 = 28 J K−1  

This process is spontaneous since   ∆S(surroundings) (surroundings) is zero and, hence,   

    ∆S(universe)= ∆S(total)> 0  

(b) The volume of the container may be calculated from the perfect gas law.  

 
  
V=

nRT

p
=

(1.00mol)× (0.08206 dm3 atm K−1 mol−1) × (373.2 K)
1.00 atm

= 30.6  dm3  

At 57°C the vapor pressure of water is 130 Torr (Handbook of Chemistry and Physics, 81st edition).  
The amount of water vapor present at equilibrium is then 

 
F12:7 



 

 

3

3 1 1

1atm
(130Torr) (30 6dm )

760Torr
0 193mol

(0 08206dm atm K mol ) (330 2K)

pV
n

RT − −

 × × . 
 = = = .

. × .
 

This is a substantial fraction of the original amount of water and cannot be ignored.  Consequently the 
calculation needs to be redone taking into account the fact that only a part, nl, of the vapor condenses 
into a liquid while the remainder (1.00 mol – nl) remains gaseous. The heat flow involving water, then, 
becomes 

  

  

q(H
2
O) = −n

1
∆

vap
H + n

1
C

p,m (H
2
O, l)∆T(H

2
O)

+(1.00mol− n
1
)C

p,m(H
2
O,g)∆T(H

2
O)

 

Because nl depends on the equilibrium temperature through  

  
n

1
= 1.00mol− pV

RT
, where p is the vapor pressure of water, we will have two unknowns (p and T) in 

the equation
  
−q(H

2
O) = q(Cu) . There are two ways out of this dilemma: (1) p may be expressed as a 

function of T by use of the Clapeyron equation, or (2) by use of successive approximations. Redoing 
the calculation yields: 
 

 

  

θ =
n

l
∆

vap
H + n

l
C

p,m (H
2
O, l) × 100°C + (1.00− n

l
)C

p,m (H
2
O,g) × 100°C

mC
s

+ nC
p,m(H

2
O, l) + (1.00− n

l
)C

p,m (H
2
O,g)

 

With 
  

  
n

1
= (1.00mol)− (0.193mol)= 0.807 mol 

(noting that Cp,m(H2O,g) = 33.6 J mol–1 K–1 [Table 2C.2]) θ = 47.2°C. At this temperature, the vapor 
pressure of water is 80.41 Torr, corresponding to 
  

  
n

1
= (1.00mol)− (0.123mol)= 0.877 mol 

This leads to θ = 50.8°C. The successive approximations eventually converge to yield a value of θ =

49.9 C 323 1K= .  for the final temperature.  (At this temperature, the vapor pressure is 0.123 bar.) 

Using this value of the final temperature, the heat transferred and the various entropies are calculated as 
in part (a). 

 
  
q(Cu)= (2.00× 103 g) × (0.385J K−1 g−1) × (49.9 K)= 38.4 kJ = −q(H

2
O)  

 

  

∆S(H
2
O) =

−n∆
vap

H

T
b

+ nC
p,m ln

T
f

T
i







= −119.8J K−1  

 
  
∆S(Cu)= mC

s
ln

T
f

T
i

= 129.2J K−1  

 
  
∆S(total)= −119.8 J K−1 + 129.2 J K−1 = 9 J K−1  

 

3A.10  ∆S  depends on only the initial and final states, so we can use f
m

i

ln  [3A.20]p

T
S nC

T,∆ =   

Since 

  

q = nC
p,m(T

f
− T

i
), T

f
= T

i
+

q

nC
p,m

= T
i
+

I 2Rt

nC
p,m

[q = ItV = I 2Rt]  

That is, 

  

∆S = nC
p,m ln 1+

I 2Rt

nC
p,mT

i









   

Since 
  
n =

500 g

63.5 g mol−1
= 7.87 mol 

 

2
1 1

1

1 1

(1 00 A) (1000 ) (15 0 s)
(7 87 mol) (24 4 J K  mol ) ln 1

(7 87) (24 4 J K ) (293 K)

(192 J K ) (ln1 27) 45.4 J K

S − −
−

− −

 . × Ω × .
∆ = . × . × + . × . × 

= × . = +
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  [1 J = 1 AVs = 1 A2Ω s] 

For the second experiment, no change in state occurs for the copper, hence,  ∆S(copper)= 0 . However, 

for the water, considered as a large heat sink 

 
2 2

1(1 00 A) (1000 ) (15 0 s)
(water) 51.2 J K

293 K

q I Rt
S

T T
−. × Ω × .

∆ = = = = +  

 
 
3A.12 Let us write Newton’s law of cooling as follows: 

  
d

( )
d s
T

A T T
t

= − −  

 Where A is a constant characteristic of the system and TS is the temperature of the surroundings.  The 
 negative sign appears because we assume T > TS. Separating variables 

  
S

d
d

T
A t

T T
= −

−
, and integrating, we obtain 

  Sln( )T T At K− = − + , where K is a constant of integration.  

 Let Ti be the initial temperature of the system when t = 0, then 

  Siln( )K T T−=  

  Introducing this expression for K gives 

  S
S S

S
i

i

ln  or ( )e AtT T
At T T T T

T T
−−

−

 −
= − = +  

 
 

  
i

d d d
ln ( ln )

d d d

S T
C C T

t t T t

 
= = 

 
 

 From the above expression for T, we obtain S Siln ln ln( )T T At T T−= − . Substituting ln t we 

 obtain Si
d

ln( )
d

S
CA T T

t
−= − , where now Ti can be interpreted as any temperature T  during the 

  course of the cooling process.  

3B   The measurement of entropy 
 

Solutions to exercises 
 

3B.1(b)  Use Sm = R ln s, where s is the number of  orientations of about equal energy that the molecule can 
adopt. 

 Draw up the following table: 
 

n: 0 1 2  3  4 5 6 

   o m p  a b c  o m p   

s 1 6 6 6 3  6 6 2  6 6 3 6 1 

Sm/R 0 1.8 1.8 1.8 1.1  1.8 1.8 0.7  1.8 1.8 1.1 1.8 0 

 
where a is the 1,2,3 isomer, b the 1,2,4 isomer, and c the 1,3,5 isomer. 
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3B.2(b)  (i) 

  

∆
r
SO = S

m
O (Zn2+ ,aq)+ S

m
O (Cu,s)− S

m
O (Zn,s)− S

m
O (Cu2+ ,aq)

= −112.1+ 33.15− 41.63+ 99.6  J K−1 mol−1 = −21.0J K−1 mol−1
  

 

(ii ) 

  

∆
r
SO = 12S

m
O (CO

2
,g) + 11S

m
O (H

2
O, l) − S

m
O (C

12
H

22
O

11
,s)− 12S

m
O (O

2
,g)

= (12× 213.74)+ (11× 69.91)− 360.2− (12× 205.14)  J K−1 mol−1

= +512.0J K−1 mol−1

 

 
 
 
 

Solutions to problems 
 

3B.2  ,m
m m

0

d
( ) (0) [3A.19]

T
pC T

S T S
T

= + ∫  

From the data, draw up the following table  
 

T / K 10 15 20 25 30 50 

  
Cp,m

T
/ (J K–2 mol–1) 0.28 0.47 0.540 0.564 0.550 0.428 

T / K 70 100 150 200 250 298 

  
Cp,m

T
/ (J K–2 mol–1) 0.333 0.245 0.169 0.129 0.105 0.089 

 
Plot Cp,m / T against T (Fig. 3B.1). This has been done on two scales. The region 0 to 10 K has been 
constructed using Cp,m = aT3, fitted to the point at T = 10 K, at which Cp,m = 2.8 J K–1 mol–1, so 

  a = 2.8× 10−3 J K−4 mol−1 . The area can be determined (primitively) by counting squares.  Area A = 

38.28 J K–1 mol–1.  Area B up to 0°C = 25.60 J K–1 mol–1; area B up to 25°C =  27.80 J K–1 mol–1.  
Hence  
 

 
Figure 3B.1 

 
(a) 

  
S

m
(273K)= S

m
(0) + 63.88J K−1 mol−1  

 

(b) 
  
S

m
(298K)= S

m
(0) + 66.08J K−1 mol−1  

 
 

3B.4  
  
S

m
(T) = S

m
(0) +

0

T

∫
C

p,m
dT

T
[3A.19] 
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Perform a graphical integration by plotting 
  
C

p,m / T  against  T  and determining the area under the 

curve.  Draw up the following table.  (The last two columns come from determining areas under the 
curves described below.)  
 

T / K 

  

C
p,m

J K−1 mol−1
 

  

C
p,m

T

J K−2 mol−1
 

  

S
m
O − S

m
O (0)

J K−1 mol−1
 

  

H
m
O − H

m
O (0)

kJ mol−1
 

0.00 0.00 0.00 0.00 0.00 
10.00 2.09 0.21 0.80 0.01 
20.00 14.43 0.72 5.61 0.09 
30.00 36.44 1.21 15.60 0.34 
40.00 62.55 1.56 29.83 0.85 
50.00 87.03 1.74 46.56 1.61 
60.00 111.00 1.85 64.62 2.62 
70.00 131.40 1.88 83.29 3.84 
80.00 149.40 1.87 102.07 5.26 
90.00 165.30 1.84 120.60 6.84 
100.00 179.60 1.80 138.72 8.57 
110.00 192.80 1.75 156.42 10.44 
150.00 237.60 1.58 222.91 19.09 
160.00 247.30 1.55 238.54 21.52 
170.00 256.50 1.51 253.79 24.05 
180.00 265.10 1.47 268.68 26.66 
190.00 273.00 1.44 283.21 29.35 
200.00 280.30 1.40 297.38 32.13 

 
Plot Cp,m against T (Fig. 3B.2(a)). Extrapolate to   T = 0  using Cp,m = aT3 fitted to the point at T = 10 K, 
which gives a = 2.09 mJ K–2 mol–1. Determine the area under the graph up to each T and plot Sm against 
T (Fig. 3B.2(b)). 
 
Figure 3B.2 

 
(a) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0 50 100 150 200

(C
p/

T
)(

J/
K

^2
·m

ol
) 

T/K  

Fig. 3.3(a) 
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(b)  

 
 
The molar enthalpy is determined in a similar manner from a plot of Cp,m against T by determining the 
area under the curve (Fig. 3.4)  

 
  
H

m
O (200 K)− H

m
O (0) =

0

200K

∫ C
p,m dT = 32.1 kJ mol-1  

 
 
 Figure 3B.3 
 

 
 
 
 

3B.6 The entropy at 200 K is calculated from 

 
  
S

m
O (200 K)= S

m
O (100 K)+

100 K

200 K

∫
C

p,m
dT

T
 

The integrand may be evaluated at each of the data points; the transformed data appear below.  The 
numerical integration can be carried out by a standard procedure such as the trapezoid rule (taking the 
integral within any interval as the mean value of the integrand times the length of the interval). 
Programs for performing this integration are readily available for personal computers. Many graphing 
calculators will also perform this numerical integration.  
 
T / K 100 120 140 150 160 180 200 

  
C

p,m
/ (J K−1 mol−1)  23.00 23.74 24.25 24.44 24.61 24.89 25.11 

  

C
p,m

T
(J K−2 mol−1)  

0.230 0.1978 0.1732 0.1629 0.1538 0.1383 0.1256 

 
Integration by the trapezoid rule yields 

 
  
S

m
O (200 K)= (29.79+ 16.81) J K−1 mol−1 = 46.60 J K−1 mol−1  

0

50

100

150

200

250

300

0 50 100 150 200

[S
(T

)-
S(

0)
]/(

J/
K

·m
ol

) 

T/K  

Fig. 3.3(b) 

0

50

100

150

200

250

300

0 50 100 150 200

C
p/

(J
/K

·m
ol

) 

T/K  

Fig. 3.4 
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Taking Cp,m constant yields 

 

  

S
m

O (200 K)=  S
m

O (100 K)+  C
p,m

 ln (200 K / 100 K)

=  [29.79+ 24.44 ln(200 / 100 K)] J K−1 mol−1 = 46.60 J K−1 mol−1
 

The difference is slight. 
 

3B.8  S = k ln W [also see Exercises 3B.1(a) and (b)] 

so 

  

S = k ln 4N = Nk ln 4

= (5× 108) × (1.38×10−23J K−1) × ln 4= 9.57×10−15J K−1
 

Question. Is this a large residual entropy?  The answer depends on what comparison is made.  Multiply 
the answer by Avogadro’s number to obtain the molar residual entropy, 5.76×109 J K–1 mol–1, surely a 
large number—but then DNA is a macromolecule.  The residual entropy per mole of base pairs may be 
a more reasonable quantity to compare to molar residual entropies of small molecules.  To obtain that 
answer, divide the molecule’s entropy by the number of base pairs before multiplying by NA.  The 
result is 11.5 J K–1 mol–1, a quantity more in line with examples discussed in Exercises 3B.1(a) and (b). 

3C   Concentrating on the system 
 

Answers to discussion questions 
 
3C.2  All of the thermodynamic properties of a system that we have encountered, U, H, S, A, and G can be 
 used as the criteria for the spontaneity of a process under specific conditions. The criteria are derived 
 directly from the fundamental relation of thermodynamics which is a  combination of the first and 
 second laws, namely 

  ext non-pVd d d d 0U p V w T S− − + + ≥  

 The inequality sign gives the criteria for the spontaneity of a process, the equality gives the 
 criteria for equilibrium. 
  
 The specific conditions we are interested in and the criteria that follow from inserting these 
 conditions into the fundamental relation are the following: 
 

(1) Constant U and V, no work at all 

 ,d 0U VS ≥  

(2) Constant S and V, no work at all 

 ,d 0S VU ≤  

(3) Constant S and p, no work at all 

 ,d 0S pH ≤  

(4) Constant T 

 d dTA w≤  

(5) Constant T and V, only non-pV work 

 , non-pVd dT VA w≤  

(6) Constant T and V, no work at all 

 ,d 0T VA ≤  

(7) Constant T and p, p = pext 

 , non-pVd dT pG w≤  

(8) Constant T and p, no non-pV work 

 ,d 0T pG ≤  

 
 
Exercises 
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3C.1(b) (i) 

  

∆
r
H O = ∆

f
H O (Zn2+ ,aq)− ∆

f
H O (Cu2+ ,aq)

= −153.89− 64.77 kJ mol−1 = −218.66kJ mol−1
  

 
  
∆

r
GO = −218.66kJ mol−1 − (298.15K)× (−21.0J K−1 mol−1) = −212.40kJ mol−1  

(ii ) 
  
∆

r
H O = ∆

c
H O = −5645kJ mol−1  

  
  
∆

r
GO = −5645kJ mol−1 − (298.15K)× (512.0J K−1 mol−1) = −5798 kJ mol−1  

 
 

3C.2(b) 3 2 3 2CO(g) CH CH OH(l) CH CH COOH(l)+ →   

 

O O O
r f f

Products Reactants

1 1 1

1

 [2C.5]

510.7 kJ mol ( 277.69kJ mol ) ( 110 53kJ mol )

122.5kJ mol

H H Hν ν

− − −

−

∆ = ∆ − ∆

= − − − − − .

= −

∑ ∑
 

 

O O O
r m m

Products Reactants

1 1 -1 1 1 1

1 1

[3B.2]

191.0J K mol 160.7 J K mol 197 67 J K mol

167.4J K mol

S S Sν ν

− − − − −

− −

∆ = −

= − − .

= −

∑ ∑
 

  

O O O
r r r

1 1 1

1

122.5kJ mol (298K) ( 167.4J K mol )

72.6 kJ mol

G H T S
− − −

−

∆ = ∆ − ∆

= − − × −

= −

 

 
 

3C.3(b) 
 
C

3
H

8
(g) + 5O

2
(g) → 3CO

2
(g) + 4H

2
O(l)   

  

∆
r
GO = 3∆

f
GO (CO

2
,g) + 4∆

f
GO (H

2
O, l) − ∆

f
GO (C

3
H

8
,g) − 0

= 3(−394.36kJ mol−1) + 4(−237.13kJ mol−1) − 1(−23.49kJ mol−1)

= −2108.11kJ mol−1

  

The maximum non-expansion work is 
 
2108.11kJ mol−1  since

  
w

add
= ∆G  

 

3C.4(b) (a) 

  

∆
r
GO = ∆

f
GO (Zn2+ ,aq)− ∆

f
GO (Cu2+ ,aq)

= −147.06− 65.49kJ mol-1 = −212.55 kJ mol−1
 

 

(b)

  

∆
r
GO = 12∆

f
GO (CO

2
,g) + 11∆

f
GO (H

2
O, l) − ∆

f
GO (C

12
H

22
O

11
,s)− 12∆

f
GO (O

2
,g)

= 12× (−394.36)+ 11× (−237.13)− (−1543)− 12× 0  kJ mol−1 = −5798 kJ mol−1
  

 

Comment. In each case these values of 
  
∆

r
GO  agree closely with the calculated values in Exercise 

3C.1(b). 
 

3C.5(b) The formation reaction of glycine is 

 2 2 2 2 2
1 5

2 2
2C(gr) O (g) N (g) H (g) NH CH COOH(s)+ + + →  

 
The combustion reaction is 

 7
2 2 2 2 2 22

5 1

2 2
NH CH COOH(s) O (g) 2CO (g) H O(1) N (g)+ → + +  
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 O O O
c f 2 f 2 f 2 2

5

2
2 (CO ,g) (H O,1) (NH CH COOH(s))H H H H∆ = ∆ + ∆ − ∆  

O O O
f 2 2 f 2 f 2 c 2 2

1 1 1

1

5

2

5

2

(NH CH COOH(s)) 2 (CO ,g) (H O,1) (NH CH COOH(s))

2 393.51 kJ mol ( ) ( 285.83 kJ mol ) ( 969 kJ mol )

532.6 kJ mol

H H H H

− − −

−

∆ = ∆ + ∆ − ∆

= − × + × − − −

= −
O O O O O O

f m 2 2 m m 2 m 2 m 2

1 1 1 1 1 1

1 1 1 1

1 1

1 5

2 2

1 5

2 2

(NH CH COOH(s)) 2 (C,gr) (O ,g) (N ,g) (H ,g)

103.5J K  mol 2 5.740J K  mol (205.138J K  mol )

191.61J K  mol (130.684J K  mol )

535.63J K  mol

S S S S S S

− − − − − −

− − − −

− −

× ×

× ×

∆ = − × − − −

= − × −

− −

= −

 

 

O O O
f f f

1 1 1

1

 

532.6 kJ mol (298.15 K) ( 535.63 J K  mol )

373kJ mol

G H T S
− − −

−

∆ = ∆ − ∆

= − − × −

= −

 

 
 
 
 

Solutions to problems 
 

3C.2 Begin with the partition function of an oscillator [See Chapter 15]. 

 V1
,

1 e x
q x hcv

T

θ
β ωβ−= = = =

−
   

The molar internal energy, molar entropy, and molar Helmholtz energy are obtained from the partition 
function as follows: 

 

   
U − U (0) = −

N

q

∂q

∂β






V

= −N(1− e− x )
d

dβ
(1− e− x )−1 =

Nωe− x

1− e− x
=

Nω
ex − 1

 

  

 

  

S =
U − U (0)

T
+ nRln q =

Nkxe− x

1− e− x
− Nk ln(1− e− x )

= Nk
x

ex − 1
− ln(1− e− x )







 

 
  
 A− A(0) = G − G(0) = −nRTln q= NkT ln(1− e− x )  

The functions are plotted in Fig. 3C.1. 
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Figure 3C.1 
 

 

3D   Combining the First and Second Laws 
 

Answers to discussion questions 
 

3D.2 The relation 
  
(∂G / ∂p)

T
= V , eqn 3D.8, shows that the Gibbs function of a system increases with p at 

constant T in proportion to the magnitude of its volume. This makes good sense when one considers the 
definition of G, which is  G = U + pV − TS . Hence, G is expected to increase with p in proportion to V 

when T is constant. 
 
 

Solutions to exercises 
 

3D.1(b) f i

i f

 ln [3D.14] ln
p V

G nRT nRT
p V

   ∆ = =   
   

 [Boyle’s law] 

 ( ) ( ) ( )3 1 1 52
6.0 10 mol 8 314J K mol 298K ln 13 J

122
G − − −  ∆ = × × . × × = − 

 
 

 

3D.2(b)  f i
f i[3D.8] hence and

p p p

G GG
S S S

T T T

∂ ∂∂      = − ; = − , = −     ∂ ∂ ∂     
 

 ( ) ( )

f i f i
f i

1

( )

73.1J 42.8J K

42.8J K

p p p

p

G G G G
S S S

T T T

G T
T T

−=

∂ ∂ ∂ −     ∆ = − = − + = −     ∂ ∂ ∂     

∂∆ ∂= − = − − + ×
∂ ∂

−

 

 

3D.3(b)  We will assume that the volume and molar volume of water changes little over the range of pressures 
given and that, therefore, equation 3D.13 which applies to incompressible substances can be used to 
solve this exercise. The change in Gibbs energy for this sample is then given by 

 m [3D.13]G nV p V p∆ = ∆ = ∆  
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3
3 3

6 3

1m
(100 cm ) 400 kPa 40 Pa m 40J

10  cm
G

 
∆ = × × = = + 

 
 

In order to calculate the change in Gibbs energy per mole we calculate the molar volume 
 

1 6 3
3 1

m 3 3

18.02 g mol 10 m
1.81 10  m mol

(density) 0.997 g cm cm
 

M
V

ρ

− −
−5 −

−
= = × = × ,then 

 
3

3 1 1
m m

10 Pa
[3D.13] 1.81 10  m mol 400 kPa 7.2 J mol

kPa
G V p −5 − −∆ = ∆ = × × × =  

 
 
3D.4(b)   
 
 
 
 
 

Solutions to problems 
 

3D.2 The Gibbs–Helmholtz equation [3D.9] may be recast into an analogous equation involving  ∆G  and 
 ∆H , since 

 

  p

∂∆G

∂T







=
p

∂Gf

∂T







−
p

∂Gi

∂T







 

and 
  
∆H = H

f
− H

i
 

Thus, 

  p

∂
∂T

∆
r
GO

T









 = −

∆
r
H O

T 2
 

 

  

d
∆

r
GO

T









 =

p

∂
∂T

∆
r
GO

T









 dT[constant pressure]= −

∆
r
H O

T 2
dT  

 

  

∆
∆

r
GO

T









 = −

∆
r
H O dT

T 2
Tc

T

∫

≈ −∆
r
H O dT

T 2
Tc

T

∫ = ∆
r
H O 1

T
− 1

T
c







[∆

r
H O  assumed constant]

 

Therefore, 

  

∆
r
GO (T)

T
−

∆
r
GO (T

c
)

T
c

≈ ∆
r
H O 1

T
− 1

T
c







 

and so 

  

∆
r
GO (T) = T

T
c

∆
r
GO (T

c
) + 1− T

T
c







∆

r
H O (T

c
)

= τ∆
r
GO (T

c
) + (1− τ )∆

r
H O (T

c
) where τ = T

T
c

 

For the reaction 

 
  
N

2
(g) + 3H

2
(g) → 2NH

3
(g) ∆

r
GΟ = 2∆

f
GΟ (NH

3
,g)  

(a) At 500 K, 
 
τ = 500

298
= 1.678 , 

so 

  

∆
r
GO (500 K)= {(1 .678) × 2× (−16.45)+ (1− 1.678) × 2× (−46.11)}kJ mol−1

= −7 kJ mol−1
 

( ) ( )1 1f
m

i

1

100.0 kPa
ln 8 314J K mol 500K ln

50.0 kPa

2.88kJ mol

p
G RT

p
− −

−

   ∆ = = . × ×   
  

= +
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(b) At 1000 K, 
 
τ = 1000

298
= 3.356, 

so 

  

∆
r
GO (1000 K)= {(3.356) × 2× (−16.45)+ (1− 3.356) × 2× (−46.11)}kJ mol−1

= +107 kJ mol−1
 

 
 

3D.4  
 T

∂S
∂V





 =

V

∂p
∂T







[Table 3D.1] 

(a) For a van der Waals gas 

 

  

p =
nRT

V − nb
−

n2a

V 2
=

RT

V
m

− b
−

a

V
m

2
 

Hence, 

  
T

∂S
∂V





 =

V

∂p
∂T







=
R

V
m

− b
 

(b) For a Dieterici gas 

  
  
p =

RTe−a/RTVm

Vm −b
 

  

  
T

∂S
∂V





 =

∂p

∂T







V

=

R 1+
a

RV
m
T







e−a/RVmT

V
m

− b
 

For an isothermal expansion, 

  
  
∆S = dS

Vi

Vf

∫ =
T

∂S
∂V





 dV

Vi

Vf

∫  

so we can simply compare 
 T

∂S
∂V





  expressions for the three gases.  For a perfect gas, 

  
  
p =

nRT

V
=

RT

V
m

 so 
  T

∂S
∂V





 =

V

∂p
∂T







=
R

V
m

 

 T

∂S
∂V





  is certainly greater for a van der Waals gas than for a perfect gas, for the denominator is 

smaller for the van der Waals gas.  To compare the van der Waals gas to the Dieterici gas, we assume 
that both have the same parameter b.  (That is reasonable, for b is an excluded volume in both 
equations of state.)  In that case, 

  

  T ,Die

∂S
∂V





 =

R 1+
a

RV
m
T







e−a/RVmT

V
m

− b
=

T ,vdW

∂S
∂V





 1+

a

RV
m
T







e−a/RVmT  

Now notice that the additional factor in 
  T ,Die

∂S
∂V





  has the form (1+x)e–x, where x > 0.  This factor is 

always less than 1.  Clearly (1+x)e–x < 1 for large x, for then the exponential dominates.  But (1+x)e–x < 
1 even for small x, as can be seen by using the power series expansion for the exponential:  (1+x)(1–

x+x2/2+...) = 1 – x2/2 + ...  So 
  T ,Die

∂S
∂V





 <

T ,vdW

∂S
∂V





   To summarize, for isothermal expansions: 

  
  
∆S

vdW
> ∆S

Die
 and 

  
∆S

vdW
> ∆S

perfect
 

The comparison between a perfect gas and a Dieterici gas depends on particular values of the constants 
a and b and on the physical conditions. 

 

3D.6 (a) ( ) ( ) ( )1 1   
p T

T
V V

V T V p
α κ  ∂ ∂= × ; = − × ∂ ∂ 
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(1) 

 T

∂S

∂V







=
V

∂p

∂T







 [Maxwell relation] 

 

( )
( )

( ) ( )
( )

[Euler chain relation  2]

[reciprocal identity   2]

1  

1  

p TV

p

T

p

T

T

p pV Mathematical Background
T VT

V
T

Mathematical Background
V
p

V
V T

V
V p

α
κ

∂ ∂   ∂= − ,   ∂ ∂∂   
∂
∂

= − ,
 ∂
 ∂ 

∂
∂

= − = +
 ∂
 ∂ 

 

 ( )
p S

V T
S p

 ∂ ∂=  ∂ ∂ 
 [Maxwell relation] 

 ( ) [Euler chain] [reciprocal]T

p TS

p

S
pT T S

S p Sp
T

 
 
  
 
 
 
  
 

∂
∂ ∂  ∂ ∂= − = −   ∂ ∂ ∂∂   
∂

 

First treat the numerator: 

 ( ) [Maxwell relation]
p

T

S V V
Tp

α ∂ ∂= − = −  ∂∂ 
 

As for the denominator, at constant p 

 

  

dS =
p

∂S

∂T







dT  and 
  
dS =

dq
rev

T
=

dH

T
=

C
p
dT

T
[dq

p
= dH ]  

Therefore, ( ) p

p

CS
T T

∂ =
∂

 and ( ) Cp p

TVV
S

α∂ =
∂

 

(2) 

 V

∂p

∂S







= −
S

∂T

∂V







 [Maxwell relation] 

  

( )
( )

( ) ( )
( )

( ) ( )
( ) ( )

( )

1
[Euler chain]  [reciprocal]

 [Maxwell relation] [Euler chain relation]

 [recipr

T

S

V
V T

pTV

VV V V

p V

VT

S
VT
SS VV
TT S

p Vp
TVT

S U S U
U T U T

V U
T S

V U
p T

∂
∂∂ − = =  ∂∂ ∂∂     

    ∂∂ ∂   
∂  ∂∂  −   ∂∂∂   

= =
∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

∂ ∂−
∂ ∂

=
 ∂ ∂
 ∂ ∂ 

ocal identity, twice]
T V V

T U
T

C S

α
κ

 ∂  = = ∂   

 

 (b)  ( ) ( )J V
U V

T UC
V T

µ ∂ ∂= =
∂ ∂

 

 

( ) ( ) ( )
( )

J
1 [Euler chain relation]

[reciprocal identity] [3D.6]

V
U V

T

T V

T UC
V T V

U

pU p T
V T

µ ∂ ∂ −= =
∂ ∂ ∂

∂
∂ ∂= − = −  ∂ ∂ 
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V

∂p
∂T







= −1

p

∂T
∂V







T

∂V
∂p







[Euler chain]=
−

p

∂V
∂T







T

∂V
∂p







= α
κ

T

 

Therefore, 

  

µ
J
C

V
= p − αT

κ
T

 

      

3D.8   [3D.6]T
V

p
T p

T
π ∂ = − ∂ 

 

 
ln

 ln  [Chapter 15]        
T T

A Q
A kT Q p kT

V V

∂ ∂   = − = − =   ∂ ∂   
 

  then  
!

N

T

q NkT q
Q p

N q V

∂ = =  ∂ 
 

 Substitute this expression for p into eqn. 3D.6. We obtain after differentiating p with respect to T at 
constant V 

 

  
2

T
T

NkT q

q T V
π ∂ ∂ =  ∂ ∂ 

 

 
 

3D.10 The Gibbs–Helmholtz equation is 

 
  

∂
∂T

∆G

T







= −
∆H

T 2
 

so for a small temperature change 

 
O O

r
2 2

O O O
r r 2 r 1 r

2 1

   and   
G H G G H

T T
T T TT T

 ∆ ∆ ∆ ∆ ∆
∆ = ∆ = − ∆  

 
 

so 

  

d
∆

r
G

T

O

∫ = −
∆

r
H OdT
T2∫  and  

∆
r
G

190
O

T
190

=
∆

r
G

220
O

T
220

+ ∆
r
H O 1

T
190

−
1

T
220







 

 

  

∆
r
G

190
Ο = ∆

r
G

220
Ο T

190

T
220

+ ∆
r
H O 1−

T
190

T
220







 

For the monohydrate 

 

  

∆
r
G

190
O = (46.2kJ mol−1) ×

190 K

220 K







+ (127 kJ mol−1) × 1−
190 K

220 K







,

∆
r
G

190
O = 57.2kJ mol−1

 

For the dihydrate 

 

  

∆
r
G

190
Ο = (69.4kJ mol−1) ×

190 K

220 K







+ (188kJ mol−1) × 1−
190 K

220 K







,

∆
r
G

190
Ο = 85.6kJ mol−1

 

For the trihydrate 

 

  

∆
r
G

190
O = (93.2kJ mol−1) ×

190 K

220 K







+ (237 kJ mol−1) × 1−
190 K

220 K







,

∆
r
G

190
O = 112.8kJ mol−1
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Integrated activities 
 
3.2  For a thorough discussion of the relationship between the thermodynamic and statistical definitions of 

entropy, see Section 3A. We will not repeat all of that discussion here and will merely summarize the 
main points.  

The thermodynamic entropy is defined in terms of the quantity revd
d

q
S

T
= where revdq is  the 

infinitesimal quantity of energy supplied as heat to the system reversibly at a temperature  T.  
 
The statistical entropy is defined in terms of the Boltzmann formula for the entropy: lnS k W= where 
k is the Boltzmann constant and W is the number of microstates, the total number of ways in which the 
molecules of the system can be arranged to achieve the same total energy of the system. These two 
definitions turn out to be equivalent provided the thermodynamic entropy is taken to be zero at T = 0.  

  
The concept of the number of microstates makes quantitative the ill-defined qualitative concepts of  
‘disorder’ and ‘dispersal of matter and energy’ that are used widely to introduce  the concept of  
entropy:  a more ‘disorderly’ distribution of energy and matter corresponds to a greater number of 
microstates associated with the same total energy. The more molecules that can participate in the 
distribution of energy, the more microstates there are for a given total energy and the greater the 
entropy than when the energy is confined to a smaller number of molecules. 

 
The molecular interpretation of entropy given by the Boltzmann formula also suggests the 
thermodynamic definition. At high temperatures where the molecules of a system can occupy a large 
number of available energy levels, a small additional transfer of energy as heat will cause only a small 
change in the number of accessible energy levels, whereas at low temperatures the transfer of the same 
quantity of heat will increase the number of accessible energy levels and microstates significantly. 
Hence, the change in entropy upon heating will be greater when the energy is transferred to a cold body 
than when it is transferred to a hot body. This argument suggests that the change in entropy should be 
inversely proportional to the temperature at which the transfer takes place as in indicated in the 
thermodynamic definition.  
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