
4 Physical transformations of pure substances 

4A Phase diagrams of pure substances 

Answers to discussion questions 

4A.2 Mathematically we can trace the change in chemical potential when pressure is changed to 
the pV term within the Gibbs energy (part of the definition of enthalpy); the product 
changes when the pressure changes. Physically, an incompressible system does not store 
energy like a spring (or like a highly compressible gas); however, it can transmit energy is it 
does in a hydraulic cylinder. Furthermore, an incompressible system under pressure is under 
stress at a molecular level. Its bonds or intermolecular repulsive forces resist external forces 
without contraction. Finally, one can observe changes in phases in equilibrium with 
incompressible liquids (the pressure of their vapours, for example) when pressure is applied 
to the liquid; see Topic 4B.1(c). 

4A.4  
Figure 4A.1 

 
Refer to Figure 4A.1. Starting at point A and continuing clockwise on path p(T) toward 
point B, we see a gaseous phase only within the container with water at pressures and 
temperatures p(T). Upon reaching point B on the vapour pressure curve, liquid appears on 
the bottom of the container and a phase boundary or meniscus is evident between the liquid 
and less dense gas above it. The liquid and gaseous phases are at equilibrium at this point. 
Proceeding clockwise away from the vapour pressure curve the meniscus disappears and the 
system becomes wholly liquid. Continuing along p(T) to point C at the critical temperature 
no abrupt changes are observed in the isotropic fluid. Before point C is reached, it is 
possible to return to the vapour pressure curve and a liquid-gas equilibrium by reducing the 
pressure isothermally. Continuing clockwise from point C along path p(T) back to point A, 
no phase boundary is observed even though we now consider the water to have returned to 
the gaseous state. Additionally, if the pressure is isothermally reduced at any point after 
point C, it is impossible to return to a liquid-gas equilibrium.  
When the path p(T) is chosen to be very close to the critical point, the water appears 
opaque. At near critical conditions, densities and refractive indices of both the liquid and 
gas phases are nearly identical. Furthermore, molecular fluctuations cause spatial variations 
of densities and refractive indices on a scale large enough to strongly scatter visible light. 
This is called critical opalescence. 

 

Solutions to Exercises 

4A.1(b) The phase rule (eqn 4A.1) relates the number of phases (P), components (C), and degrees of 
freedom (F) of a thermodynamic system: 
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 F = C – P + 2 . 
Restricting to pure substances (C=1) and rearranging for phases gives 
 P = 3 – F . 
Areas in the phase diagram have two degrees of freedom; one can vary pressure and 
temperature independently (within limits) and stay within the area. Thus, F = 2 and P = 1 in 
areas. Lines have one degree of freedom; one can vary pressure or temperature, but to stay 
on the line the value of the other is determined by the line. Thus, F = 1 and P = 2 on lines. 
Points on the phase diagram have zero degrees of freedom; one can vary neither pressure 
nor temperature and on a given point. Thus, F = 0 and P = 3 on points. 
(a) is in an area, so there is a single phase. (b) and (c) are points, so there are three phases 
present. (d) is on a line, so there are two phases present.  

4A.2(b) For pure substances (one-component systems), the chemical potential is the molar Gibbs 
energy: 
 dG = (µ2 – µ1)dn  
so ∆G = (µ2 – µ1)n = (–8.3 kJ mol–1)(0.15×10–3 mol) = +1.2×10–3 kJ = 1.2 J. 

4A.3(b) Use the phase rule (eqn 4A.1) 
 F = C – P + 2 
to solve for the number of phases: 
 P = C – F + 2 = 4 – F + 2 = 6 – F ≤ 6 . 
The maximum number of phases in equilibrium occurs when the number of degrees of 
freedom is at a minimum, namely zero; that number is six. 

 

4B Phase diagrams of pure substances 

Answers to discussion questions 

4B.2 See Topic 4B.1(b). The mathematical reason can be seen in eqn 4B.2, 

 

  

∂µ
∂p







T

= V
m

 

Because Vm > 0 for all pure substances, the slope of the change in chemical potential with 
respect to change in pressure is positive: chemical potential increases with increasing 
pressure. See also the answer to Discussion question 4A.2, which addresses why the 
chemical potential changes even in incompressible substances. 

4B.4 See Topic 4B.3 for classification of phase transitions. First-order phase transitions show 
discontinuities in the first derivative of the Gibbs energy with respect to temperature. They 
are recognized by finite discontinuities in plots of H, U, S, and V against temperature and by 
an infinite discontinuity in Cp. Second-order phase transitions show discontinuities in the 
second derivatives of the Gibbs energy with respect to temperature, but the first derivatives 
are continuous. The second-order transitions are recognized by kinks in plots of H, U, S, 
and V against temperature, but most easily by a finite discontinuity in a plot of Cp against 
temperature. A λ-transition shows characteristics of both first and second-order transitions 
and, hence, is difficult to classify by the Ehrenfest scheme. It resembles a first-order 
transition in a plot of Cp against T, but appears to be a higher-order transition with respect to 
other properties.  
At the molecular level first-order transitions are associated with discontinuous changes in 
the interaction energies between the atoms or molecules constituting the system and in the 
volume they occupy. One kind of second-order transition may involve only a continuous 
change in the arrangement of the atoms from one crystal structure (symmetry) to another 
while preserving their orderly arrangement. In one kind of λ-transition, called an order-
disorder transition, randomness is introduced into the atomic arrangement. See Figures 4B.9 
through 4B.12 of the text. 

Solutions to Exercises 

4B.1(b) The difference between the definition of normal and standard transition temperatures is the 
pressure at which the transition takes place: normal refers to exactly 1 atm (101325 Pa), 
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while standard refers to exactly 1 bar (exactly 105 Pa). At the standard boiling temperature 
and pressure, the liquid and gas phases are in equilibrium, so their chemical potentials are 
equal: 
 µliquid(Tstd,pstd) = µgas(Tstd,pstd) 
The same can be said at the normal boiling temperature and pressure: 
 µliquid(Tnorm,pnorm) = µgas(Tnorm,pnorm) 
Equations 4B.1 and 4B.2 show how the chemical potential changes with temperature and 
pressure, so for small changes we can write 

 

  

dµ =
∂µ
∂T







p

dT +
∂µ
∂p







T

dp = −S
m
dT + V

m
dp  

Assuming that the differences between standard and normal boiling point are small enough, 
we can equate the differences in the chemical potentials of the two phases: 
 ∆µgas = –Sm,gas∆T + Vm,gas∆p = –Sm,liquid∆T + Vm,liquid∆p = ∆µliquid , 
where ∆p is defined as pnorm–pstd. Rearrange to isolate ∆T: 
 (Sm,liquid–Sm,gas)∆T = (Vm,liquid–Vm,gas)∆p , 
 (–∆vapS)∆T = (Vm,liquid–Vm,gas)∆p ≈ –Vm,gas∆p 
Use the ideal gas law to find the molar volume of the gas. Also, we need to find ∆vapS or to 
use Trouton’s rule (eqn 3A.17): 

 

  

∆T ≈
V

m,gas
∆p

∆
vap

S
=

RT∆p

p∆
vap

S
=

RT
b
2∆p

p∆
vap

H
=

(8.3145 J K−1 mol−1)(373 K)2(1325 Pa)

(105  Pa)(40.656× 103  J)

= 0.38 K

 

That is, the normal boiling temperature is 0.38 K higher than the standard boiling 
temperature. 

4B.2(b) Equation 4B.1 shows how the chemical potential changes with temperature  

 

  

dµ =
∂µ
∂T







p

dT = −S
m
dT  

so 

  

∆µ = − S
m

dT∫ = −S
m

∆T = −53 J K−1 mol−1 × (1000− 100) K

= 4.8× 104  J mol−1 = 48 kJ mol−1

 

4B.3(b) Equation 4B.2 shows how the chemical potential changes with pressure  

 

  

dµ =
∂µ
∂p







T

dp = V
m
dp =

M

ρ
dp  

so 

  

∆µ =
M

ρ
dp∫ =

M

ρ
∆p =

78.11 g mol−1

0.879 g cm−3
× (10× 106 − 100× 103) Pa×

1 m3

106  cm3

= 8.8× 102  J mol−1 = 0.088 kJ mol−1

 

Note: we assumed that the sample is incompressible. 

4B.4(b) The effect on vapour pressure of a change in applied external pressure on a liquid is given 
by eqn 4B.3: 

   p = p*eVm ( l) ∆P/RT . 

For liquid naphthalene, the molar volume is 

 
  
V

m
=

M

ρ
=

118.16 g mol−1

0.962 g cm−3
= 122.8 cm3  mol−1  

so 
  

V
m

(l)∆P

RT
=

122.8 cm3  mol−1 × (15× 106 − 1.0× 105) Pa

8.3145 J K−1 mol−1 × 368 K
×

1 m3

106  cm3
= 0.598 

and   p = p*eVm ( l) ∆P/RT = (2.0 kPa)e0.598 = 3.6 kPa. 

4B.5(b) Use the Clapeyron equation (eqn 4B.5a) 

 
  

dp
dT

=
∆

trs
S

∆
trs
V
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Assume that ∆fusS and ∆fusT are independent of temperature: 

 
  
∆

fus
S = ∆

fus
V × dp

dT







≈ ∆
fus

V × ∆p
∆T

 

 

  

∆
fus

S = (152.6cm3 mol−1 − 142.0cm3 mol−1) ×
(1.2× 106 Pa− 1.01× 105 Pa)

429.26 K − 427.15K

= (10.6cm3 mol−1) ×
1m3

106 cm3







× (5.21× 105 Pa K−1)

= 5.52 Pa m3 K −1 mol−1 = +5.5J K−1 mol−1

 

At the melting temperature 

 
  
∆

fus
H = T

f
∆

fus
S = (427.15K)× (5.52J K−1 mol−1) = +2.4kJ mol−1  

4B.6(b) On the assumption that the vapour is a perfect gas and that ∆vapH is independent of 
temperature, we may write [4B.11] 

 

  

p = p∗e− χ , χ =
∆

vap
H

R









 ×

1

T
−

1

T∗







, ln
p∗

p
= χ  

 

  

1

T
=

1

T∗
+

R

∆
vap

H
ln

p∗

p

=
1

293.2 K
+

8.3145J K−1 mol−1

32.7 × 103 J mol−1
× ln

58.0
66.0







= 3.378 × 10−3 K −1

 

Hence 
  
T =

1

3.378 × 10−3 K −1
= 296 K = 23°C  

4B.7(b) Integrating the Clausius-Clapeyron eqation (4B.10) yields an expression for ln p: 

 
  

d ln p∫ =
∆

vap
H

RT2∫ dT  

so 
  
ln p = constant−

∆
vap

H

RT
 

Therefore, 
  
∆

vap
H = 3036.8K × R = 8.3145 J K−1 mol−1 × (3036.8K) = +25.25kJ mol−1  

4B.8(b) (i) The indefinitely integrated form of eqn 4B.10 is used as in Exercise 4B.7(b). 

 
  
ln p = constant−

∆
vap

H

RT
, or log p = constant−

∆
vap

H

2.303 RT
 

Thus 

  

∆
vap

H = 1625K× R× 2.303= 1625K× 8.3145 J K−1 mol−1 × 2.303

= 31.11kJ mol−1

 

(ii)  The normal boiling point corresponds to p = 1.000 atm = 760 Torr, 

so 
  
log760= 8.750−

1625 K

T
 

and 
  
T =

1625 K

8.750− log760
= 276.9 K  

4B.9(b)  

  

∆T ≈
∆

fus
V

∆
fus

S
× ∆p [4B.5a and Exercise 4B.5(a)]

≈
T

f
∆

fus
V

∆
fus

H
× ∆p =

T
f
M ∆p

∆
fus

H
× ∆ 1

ρ






[V
m

= M / ρ]

 

Normal freezing point is Tf = (273.15 – 3.65) K = 269.50 K at a pressure of 1 atm, which is 
about 0.1 MPa. Thus, to the nearest MPa, ∆p = 100 MPa = 1.00×108 Pa 
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∆T ≈
269.50 K × 46.1 g mol−1 × (1.00× 108  Pa)

8.68× 103 J mol−1
×

1

0.789gcm−3
−

1

0.801gcm−3








≈ 2.7 K

 

Therefore, at 100 MPa, Tf = (269.50+2.7) K = 272.2 K or –1.0°C. 

4B.10(b) The rate of loss of mass of water may be expressed as 

 

  

dm

dt
=

d

dt
(nM) where n =

q

∆
vap

H
 

Thus 

  

dn

dt
=

dq dt

∆
vap

H
=

(0.87× 103 W m−2 ) × (104  m2 )

44.0× 103 J mol−1
= 200 mols−1  

and 
  

dm

dt
= (200 mol s−1) × (18.02g mol−1) = 3.6 kgs−1  

4B.11(b) The equilibrium vapour pressure of ice at –5°C is 0.40 kPa Therefore, the frost would 
sublime. A partial pressure of  0.40 kPa or more would ensure that the frost remains. 

4B.12(b) (i) According to Trouton’s rule (eqn 3A.17) 

 
  
∆

vap
H ≈ 85J K−1 mol−1 × T

b
= 85J K−1 mol−1 × 342.2 K = 29.1 kJ mol−1  

(ii ) Use the integrated form of the Clausius–Clapeyron equation (eqn 4B.11) rearranged to 

 

  

ln
p

2

p
1







=

∆
vap

H

R
×

1

T
1

−
1

T
2







 

At T1 = 342.2 K, p1 = 1.000 atm [normal boiling point]; thus at 25°C 

 

  

ln
p

2

1.000 atm







=

2.91× 104 J mol−1

8.3145 J K−1 mol−1







×

1

342.2 K
−

1

298.2 K







= −1.51 

and p2 = e–1.51 atm = 0.22 atm . 

At 60°C, 

  

ln
p

2

1.000 atm







=

2.91× 104 J mol−1

8.3145 J K−1 mol−1







×

1

342.2 K
−

1

333.2 K







= −0.276 

and p2 = e–0.276 atm = 0.76 atm . 

4B.13(b)  
  
∆T = T

f
(10 MPa)− T

f
(0.1MPa)=

T
f
∆pM

∆
fus

H
∆

1

ρ






 [Exercise 4B.9(b)] 

 

  

∆T =
(273.15K)× 9.9× 106 Pa× 18.0g mol−1

6.01× 103 J mol−1








×
1

0.998 g cm−3
−

1

0.915 g cm−3







= −0.74 K

 

 Tf(10 MPa) = (273.15 – 0.74) K = 272.41 K. 

4B.14(b)  ∆vapH = ∆vapU + ∆vap(pV) = 43.5 kJ mol–1 
 ∆vap(pV) = p∆vapV = p(Vgas – Vliq) ≈ pVgas = RT [perfect gas] 
 ∆vap(pV) ≈ (8.3145 J K–1 mol–1) × (352 K) = 2.93×103 J mol–1  

 

  

Fraction=
∆

vap
( pV)

∆
vap

H
=

2.93kJ mol−1

43.5kJ mol−1
= 0.0673= 6.73per cent 

Solutions to problems 

4B.2 Use the definite integral form of the Clausius–Clapeyron equation [Exercise 4B.12(b)]. 

 

  

ln
p

2

p
1







=

∆
vap

H

R
×

1

T
1

−
1

T
2







 

At T1 = (273.15 – 29.2) K = 244.0 K (normal boiling point), p1 = 1.000 atm; thus at 40°C 
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ln
p

2

1.000 atm







=

20.25× 103 J mol−1

8.3145 J K−1 mol−1







× 1

244.0 K
− 1

313.2 K






= 2.205 

and p2 = 1.000 atm × e2.205 = 9.07 atm 
Comment. Three significant figures are not really warranted in this answer because of the 
approximations employed. 

4B.4 (a) 

  

p

∂µ(l)
∂T







−
p

∂µ(s)
∂T







= −S
m

(l) + S
m

(s)= −∆
fus

S =
−∆

fus
H

T
f

 [4B.12]

= −6.01× 103 J mol−1

273.15K
= −22.0 J K−1mol−1

 

(b) 

  

p

∂µ(g)
∂T







−
p

∂µ(l)
∂T







= −S
m

(g) + S
m

(l) = −∆
vap

S =
−∆

vap
H

T
b

= −40.6× 103 J mol−1

373.15K
=  −108.8 J K−1 mol−1

 

(c) µ(l,–5°C) – µ(s,–5°C) = µ(l,–5°C) – µ(l,0°C) – {µ(s,–5°C) – µ(s,0°C)} 
because µ(l,0°C) = µ(s,0°C) 
Thus µ(l,–5°C) – µ(s,–5°C) = ∆µ(l) – ∆µ(s) 
where ∆µ is the difference in chemical potential of a given phase at –5°C compared to that at 
normal freezing temperature. 

 

  

∆µ ≈
p

∂µ
∂T







∆T = −S
m

∆T  [4B.1] 

so { µ(l,–5°C) – µ(l,0°C)} –{ µ(s,–5°C)– µ(s,0°C)} = –∆fusS ∆T 

 
 
µ(l,−5°C) − µ(s,−5°C) = −(+22.0J K−1 mol−1) × (−5K) = +110 J mol−1  

Since µ(l,–5°C) > µ(s,–5°C), there is a thermodynamic tendency to freeze. 

4B.6  
  

dp
dT

=
∆

fus
S

∆
fus

V
[4B.5a]=

∆
fus

H

T∆
fus

V
 [4B.6] 

Thus 
  
dT =

T∆
fus

V

∆
fus

H
dp . 

Integrate both sides: 

 
  
∆T = dT

Tf,top

Tf,bot

∫ =
T

m
∆

fus
V

∆
fus

H
dp

p
top

p
bot∫ =

T
m

∆
fus

V

∆
fus

H
∆p  [assuming the integrand is constant] 

Now ∆p = pbot – ptop = ρgh ; 

so 

  

∆T =
T

m
ρgh∆

fus
V

∆
fus

H

=
(234.3K) × (13.6gcm−3) × (9.81m s−2 ) × (10.0m)× (0.517cm3 mol−1)

2.292× 103  J mol-1
×

1 kg

103  g

= 0.071 K

 

Therefore, the freezing point changes to  234.4 K  

4B.8 Integrating the Clausius-Clapeyron eqation [4B.10] yields an expression for ln p: 

 
  
ln p = constant−

∆
vap

H

RT
 

Therefore, plot ln p against 1/T and identify –∆vapH/R as the slope of the plot. Construct the 
following table 

θ /°C 0 20 40 50 70 80 90 100 
T / K 273 293 313 323 343 353 363 373 
1000 K / T 3.66 3.41 3.19 3.10 2.92 2.83 2.75 2.68 
ln (p / kPa) 0.652 1.85 2.87 3.32 4.13 4.49 4.83 5.14 
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Figure 4B.1 
 

 
 
 
 

The points are plotted in Figure 4B.1. The slope is –4569 K, so 

 
  

−∆
vap

H

R
= −4569 K, or ∆

vap
H = +38.0 kJ mol-1  

The normal boiling point occurs at p = 1 atm = 101.3 kPa, or at ln(p/kPa) = 4.618, which from 
the figure corresponds to 1000 K/T = 2.80. Therefore, Tb = 357 K (84°C) The accepted value 
is 83°C. 

4B.10 The slope of the solid–vapour coexistence curve is given by 

 
  

dp

dT
=

∆
sub

H

T∆
sub

V
 [analogous to 4B.9] so ∆

sub
H = T∆

sub
V

dp

dT
 

 
Figure 4B.2 

 
The slope can be obtained by differentiating an equation fit to the coexistence curve (Figure 
4B.2). Fit the data to an exponential function or take natural logarithms of the pressures and 
make a linear fit to the transformed data. The fit equation is 
  p/Pa = 2.659×10–10 e0.1687T/K 
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so 
  

dp

dT
= (2.659× 10−10  Pa)× (0.1687 K−1) × e0.1687T /K = 4.41Pa K−1  at 150 K. 

The change in volume is essentially the volume of the vapour 

 
  
V

m
= RT

p
=

(8.3145 J K−1 mol−1) × (150 K)

(2.659× 10−10  Pa)× e0.1687×150
= 47.7 m3  

So 
  
∆

sub
H Ο = (150 K)× (47.7 m3) × 4.41Pa K−1 = 3.16× 104 J mol−1 = 31.6kJ mol−1  

4B.12  dH = CpdT + V dp implies d∆H = ∆CpdT + ∆V dp , 
where ∆ signifies a difference between phases. Along a phase boundary dp and dT are related 
by 

 
  

dp

dT
= ∆H

T∆V
 [4B.6 or 4B.9] 

Therefore, 

 
  
d∆H = ∆C

p
+ ∆V ×

∆H

T∆V







dT = ∆C
p

+
∆H

T







dT and
d∆H

dT
= ∆C

p
+

∆H

T
 

Then, since 

 
  

d

dT

∆H

T







=
1

T

d∆H

dT
−

∆H

T 2
=

1

T

d∆H

dT
−

∆H

T







 

substituting the first result gives 

 
  

d

dT

∆H

T







=
∆C

p

T
 

Therefore, 

 ( ) d
d  d In p

p

C TH C T
T T

∆∆ = = ∆  

4B.14 Equation 4B.3 gives the vapour pressure of a liquid under an additional applied pressure ∆P: 

   p = p*eVm ( l) ∆P/RT  

The applied pressure is the hydrostatic pressure of the liquid overlying the depth d: 
 ∆P = ρgd 
The molar volume of the liquid is 
 Vm(l) = M / ρ 
Substituting into eqn. 4B.3 yields 
 p = p*eMgd/RT 
For a 10-m column of water at 25°C, 

 
  

Mgd

RT
=

(18.02× 10−3  kg mol−1) × (9.81 m s−2 ) × (10 m)

(8.3145 J K−1 mol−1) × (298 K)
= 7.1× 10−4  

so 
  

p

p*
= e7.1×10−4

≈ 1+ 7.1× 10−4  

That is, the fractional increase in vapor pressure is 7.1×10–4 or 0.071 per cent. 

4B.16 In each phase the slopes of curves of chemical potential plotted against temperature are 

 

  p

∂µ
∂T







= −S
m

 [4.1] 

The curvatures of the graphs are given by 

 

  p

∂2µ
∂T 2







= −

p

∂S
m

∂T







 

To evaluate this derivative, consider dS at constant p: 

 
  
dS =

dq
rev

T
=

dH

T
=

C
p
dT

T
 so 

  p

∂2µ
∂T 2







= −

p

∂S
m

∂T







= −

C
p,m

T
 

Since Cp,m is necessarily positive, the curvatures in all states of matter are necessarily 
negative. Cp,m is often largest for the liquid state, though not always. In any event, it is the 
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ratio Cp,m/T that determines the magnitude of the curvature, so no general answer can be given 
for the state with the greatest curvature. It depends upon the substance. 

4B.18  S = S(T,p) 

 

  

dS =
p

∂S

∂T







dT +
T

∂S

∂p







dp  

 

  p

∂S

∂T







=
C

p

T
 [Problem 4B.16]

T

∂S

∂p







= −
p

∂V

∂T







 [Table 3D.1]= −αV
m

 

 

  

dq
rev

= T  dS = C
p
dT − T

p

∂V
∂T





 dp  

 

  

C
S

=
S

∂q

∂T







= C
p

− TVα
S

∂p

∂T







= C
p

− αV ×
∆

trs
H

∆
trs
V

[4B.6] 

Integrated activities 

4.2 (a) The phase diagram is shown in Figure I4.1. 
 
Figure I4.1 
 

 
 

(b) The standard melting point is the temperature at which solid and liquid are in equilibrium 
at 1 bar. That temperature can be found by solving the equation of the solid–liquid coexistence 
curve for the temperature: 
 1 = p3/bar + 1000(5.60+11.727x)x . 
Put the equation into standard form: 
 11727x2 + 5600x + (4.362×10–7 –1) = 0 
The quadratic formula yields 

 
{ } ( )

( )
2

1/21/22

11727

4 11727
5600

5600

1 15600 (5600) 4 11727 (–1)

2 11727 2
x

×− ± +− ± − × ×
= =

× ×
 

The square root is rewritten to make it clear that the square root is of the form 
  
1+ a{ }1 2

, with 

฀  a = 1; thus the numerator is approximately 
  
−1+ 1+ 1

2 a( )= 1
2 a , and the whole expression 

reduces to 
 x ≈ 1/5600 = 1.79×10–4 . 
Thus, the melting point is 
 T = (1+x)T3 = (1.000179) × (178.15 K) = 178.18 K. 
(c) The standard boiling point is the temperature at which the liquid and vapour are in 
equilibrium at 1 bar. That temperature can be found by solving the equation of the liquid–
vapour coexistence curve for the temperature. This equation is too complicated to solve 
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analytically, but not difficult to solve numerically with a spreadsheet. The calculated answer is 
y = 0.6459, 
so T = 0.6459 × 593.95 K = 383.6 K . 
(d) The slope of the liquid–vapour coexistence curve is given by 

 

  

dp

dT
=

∆
vap

H

T∆
vap

V
 [4B.9] so ∆

vap
H = T∆

vap
V

dp

dT
 

The slope can be obtained by differentiating the equation for the coexistence curve. 

 
  

dp

dT
= p

d ln p

dT
= p

d ln p

dy

dy

dT
 

 

  

dp

dT
=

10.413

y2
− 15.996+ 2(14.015)y − 3(5.0120)y2 − (1.70)× (4.7224)× (1− y)0.70






×
p

T
c








 

Substituting the value of y at the boiling point yields, 

 
  

dp

dT
= 2.848× 10−2 bar K−1 = 2.848kPa K−1  

and 

  

∆
vap

H = (383.6 K) ×
(30.3− 0.12)dm3 mol−1

1000dm3 m−3







× (2.848kPa K−1) = 33.0kJ mol−1  

4.4 (a) The phase boundary is plotted in Figure I4.2. 
 
Figure I4.2 
 
 

 
(b) The standard boiling point is the temperature at which the liquid is in equilibrium with the 
standard pressure of 1 bar (0.1 MPa). Interpolation of the plotted points gives Tb = 112 K. 
(c) The slope of the liquid–vapor coexistence curve is given by 

 

  

dp

dT
=

∆
vap

H

T∆
vap

V
 [4B.9] so ∆

vap
H = (T∆

vap
V )

dp

dT
 

The slope can be obtained graphically or by fitting the points nearest the boiling point. Then 

 
  

dp

dT
= 8.14× 10−3 MPa K−1  

so 

  

∆
vap

H = (112 K)×
(8.89− 0.0380)dm3 mol−1

1000dm3 m−3







× (8.14kPa K−1) = 8.07 kJ mol−1  
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