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4 Physical transformations of pure substances

4A  Phase diagrams of pure substances

Answers to discussion questions

Mathematically we can trace the change in chemical potential when presshaaged to
the pV term within the Gibbs energy (part of the definition of enthalpy); the ymtod
changes when the pressure changes. Physically, an incompressibie dgsis not store
energy like a spring (or like a highly compressible gas); howevem iraasmit energy is it
does in a hydraulic cylinder. Furthermore, an incompressible systder pressure is under
stress at a molecular level. Its bonds or intermolecular repulsivesfoesist external forces
without contraction. Finally, one can observe changes in phases in eguilibvith
incompressibleifuids (the pressure of their vapours, for example) when pressureisdappl
to the liquid; see Topic 4B.1(c).

Figure 4A.1
Vapor pressure curve of water
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Refer to Figure A.1. Starting at point A and continuing clockwise on paff) toward

point B, we see a gaseous phase only within the container with wateesaumgs and
temperaturep(T). Upon reaching point B on the vapour pressure curve, liquid appears on
the bottom of the container and a phase boundary or meniscus is eetlesti the liquid

and less dense gas aboveTie liquid and gaseous phases are at equilibrium at this point.
Proceeding clockwise away from the vapour pressure curve the oedisappears and the
system becomes wholly liquid. Continuing algu(@) to point C at the critical temperature

no abruptchanges are observed in the isotropic fluid. Before point C is reachid, it
possible to return to the vapour pressure curve and adigscequilibrium by reducing the
pressure isothermally. Continuing clockwise from point C along p@hback to poih A,

no phase boundary is observed even though we now consider the water tethianed to

the gaseous state. Additionally, if the pressure is isothermallyceddat any point after
point C, it is impossible to return to a liquigs equilibrium.

When the pathp(T) is chosen to be very close to the critical point, the water appears
opaque. At near critical conditions, densities and refractive indicestbfthe liquid and

gas phases are nearly identical. Furthermore, molecular fluctuations patiderariations

of densities and refractive indices on a scale large enough to strongér ssitile light.

This is called critical opalescence.

Solutions to Exercises

The phase rule (egn 4A.1) relates the number of phB¥esomponentsQ), ard degrees of
freedom F) of a thermodynamic system:
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4A.2(b)

4A.3(b)

4B.2

4B.4

4B.1(b)

F=C-P+2.
Restricting to pure substancé&s=() and rearranging for phases gives
P=3-F.
Areas in the phase diagram have two degrees of freedom; one can vary pressure and
temperature independgy (within limits) and stay within the area. This= 2 andP = 1 in
areas. Lines have one degree of freedom; one can vary pressure or tempanator stay
on the line the value of the other is determined by the line. Fhasl andP = 2 on lines.
Points on the phase diagram have zero degrees of freedom; one can varypneithae
nor temperature and on a given point. Thus,0 andP = 3 on points.
(a) is in an area, so there isiagle phase (b) and (c) are points, so there

present. (d) is on a line, so there [awe phasepresent.

For pure substances (enemponent systems), the chemical potential is the molar Gibbs
energy:

dG = (4 — m)dn
SO AG= (1 — u)n = (-8.3 kI mol’)(0.15¢10° mol) = +1.210°kJ =[1.2].

Use the phase rule (eqn 4A.1)
F=C-P+2
to solve for the number of phases:
P=C-F+2=4-F+2=6-F<lg.
The maximum number of phases in equilibrium occurs when the number eedegfr
freedom is at a minimum, namely zercattihumber is six.

4B  Phase diagrams of pure substances

Answers to discussion questions

See Topic 4B.1(b). The mathematical reason can be seen in eqn 4B.2,
(op)

op).

BecauseV,, > 0 for all pure substances, the slope of the chamghémical potential with

respect to change in pressure is positive: chemical potential increasesnevéasing

pressure. See also the answer to Discussion question 4A.2, whigtsseddwhy the
chemical potential changes even in incompressible substance

m

See Topic 4B.3 for classification of phase transitidfisstorder phase transitions show
discontinuities in the first derivative of the Gibbs energy witheesfo temperature. They
are recognized by finite discontinuities in plotdhfU, S andV against temperature and by
an infinite discontinuity inC,. Seconeorder phase transitions show discontinuities in the
second derivatives of the Gibbs energy with respect to temperature, fitgttderivatives
are continuous. The secendder trasitions are recognized by kinks in plotstéf U, S
andV against temperature, but most easily by a finite discontinuity in a plSt against
temperature. A.-transition shows characteristics of both first and se@vddr transitions
and, hence, is fficult to classify by the Ehrenfest scheme. It resembles adidsr
transition in a plot o€, againstT, but appears to be a highender transition with respect to
other properties.

At the molecular level firsbrder transitions are associated wdiscontinuous changes in
the interaction energies between the atoms or molecules constitutisgsteen and in the
volume they occupy. One kind of seceodler transition may involve only a continuous
change in the arrangement of the atoms from one tigtstecture (symmetry) to another
while preserving their orderly arrangement. In one kind.-fansition, called an order
disorder transition, randomness is introduced into the atomic amangeSee Figures 4B.9
through 4B.12 of the text.

Solutions to Exercises

The difference between the definition of normal and standard tansiimperatures is the
pressure at which the transition takes place: normal refezgatctly 1 atm (101325 Pa),
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4B.2(b)

4B.3(b)

4B.4(b)

4B.5(b)

while standard refers to exactly 1 bar (exactly B8).At the standard boiling temperature
and pressure, the liquid and gas phases are in equilibrium, sohéeircal potentials are
equal:

Hiquid(TstaPstd) = Hgad TstaPstd)
The same can be said at the normal boiling temperature and pressure:

ﬂliquid(Tnormypnorm) = /lgas(Tnormypnorm)
Equations 4B.1 and 4B.2 show how the chemical potential changes mipleregure and
pressure, so for small changes we can write

(a,u\ [8;1\ B
La_T pdTJrLa_pJT dp=-S,dT +V dp

Assuming that the differences between standard and normal boilimgape small enough,
we can equate the differences in the chemical potentials of the two phases:

Aplgas= _S’n,gaﬁT + Vm,gaéxp = _S’n,liquidAT + Vm,liquidAp = Athiquid »
whereAp is defined aphomPste REArrange to isolater:

(S jiquic=Sm,gad AT = (Vi liquic—Vm,gad AP

(_AvapaAT = (Vm,liquid_vm,gagAp ~ _Vm,gaéxp
Use the ideal gas law to find the molar volume of the gas. Also, we need 1,4iS or to
use Trouton’s rule (eqn 3A.17):

AT ~ VigdP  RTAp  RT?Ap  (8.3145 J K" mol*)(373 KY (1325 Pa,

A.S PALS PAH (10° Pa)(40.656 10° J)

vap vap
~[038K]

That is, the normal boiling tempdure is 0.38 K higher than the standard boiling
temperature.

du=

Equation 4B.1 shows how the chemical potential changes with temgeratu

du= (a—”\ dT =-S,dT
ar),

S0 Au=-[S dT =-§ AT =-53J K" mol” x (1000-100) K

~4.8x10" J mot*| =48 kJ mot'|

Equation 4B.2 shows how the chemical pasdrthanges with pressure

(6,u\ M
du=|—| dp=V dp=—0d
1 LﬁpJTp mdP - p

1im’
10° cm®

so Aﬂzj‘MdpzﬂA :M
P P 0.879 gcm

- [8.8x 107 3 mot*| = [0.088 kJ mot|
Note: we assumed that the sample is incompressible.

x (10x 10° —100x 10°) Pax

The effect on vapour pressure of a change in applied external pressure od B lgjuén
by eqn 4B.3:
p= p*evm(I)AP/RT
For liquid naphthalene, the molar volume is
_ M 118.16 g mof
™ p 0.962gcn?
V. (DAP 122.8 cnd mol™ x (15x 10° —1.0x 10°) Pa 1 m’
RT 8.3145 J K* mol™* x 368 K 10° cm®

and p= p*e""*RT = (2.0 kPa)&°*®=|3.6 kP3.

Use the Clapeyron equation (egn 4B.5a)
dp _A.S

ar AV

=122.8 cm mol™

=0.598
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Assume thatq,SandAgsT are independent of temperature:

AL S=AV x [3—_?] S ALV X %

(1.2x10° Pa—1.01x 10° Pa)
42926 K — 42715K

A,.S=(1526cm’ mol™ —1420cn? mol™) x

im?

1P cm®

=552PamiK™*mol™ = |+55JK*mol™

At the melting temperature
A H=TA S=(42715K)x (5.5_2J K*mol™) = |+2.4kJ mol*

4B.6(b) On the assumption that the vapour is a perfect gas andAghht is independent of
temperature, we may write [4B.11]

(AvapH\ (1 1) p’

— X —_——

p=pe”, 1=L RJ T ) In .

= (10.6cn” mol™) x { } x (5.21x10° Pa K™)

=X

11, R P
T T A_H p

vap

1 8.3145JK mol* , (580)

= + - X Ink J
2932K  327x10°Jmol 66.0

HenceT = —— L _296K=

3.378x10°K™

=3378x10°K™

4B.7(b) Integrating the ClausiuSlapeyron eqation (4B.10) yields an expression fqx In
A
jd Inp= .[

vaj H
p2 dar
RT
Ava
so  Inp=constant —>—
RT

Therefore,A , H = 30368K x R=8.314 J K™ mol™ x (30368 K) = |+25.25kJ mol'

4B.8(b) (i) The indefinitely integrated form of eqn 4B.10 is used as in Exercise®)B.7(
vap

2.303RT

Thus A, H =1625Kx Rx 2.303=1625Kx 8.3145 J K" mol™ x 2.30¢

=[3111kJ mof*

(i) The normal boiling point correspondsge 1.000 atm = 760 Torr,
1625 K

A _H
In p = constant- % or logp = constant-

SO log 760= 8.750—

and T:& 2769 K

8.750— log 760
AV :
4B.9(b) AT = ALSS x Ap [4B.5a and Exercise 4B.5(a)]
fus
TA V TMA
zﬁxAp=f—pXA[lj [Vm =M/ p]
fusH AfusH ,D

Normal freezing point i3 = (273.15- 3.65) K = 269.50 K at a pressure of 1 atm, which is
about 0.1 MPa. Thus, to the nearest Ma= 100 MPa = 1.0010° Pa



26950 K x 46.1 g mol’ x (1.00x 10° Pa) ( 1

AT ~
8.68x10° I mor* 0.789¢ Crﬁ3 0. 801g cm J

~2.7K
Therefore, at 100 MP&; = (269.50+2.7) K $272.2K| or[-1.0°C.

4B.10(b) The rate of loss of mass of water may be expressed as

d—mzi(nM) where n= g
dt  dt A, H

Thus 9N _ dg/dt _ (0.87x10°Wm™)x (10' m?) 200 mols?
dt A, H 44.0x10° I mol™

and (il = (200 mol s') x (18.02gmol*) =|3.6 kgs*

4B.11(b) The equilibrium vapour pressure of ice -&°C is 0.40 kPa Therefore, the frost would

sublime. A partial pressure |rﬁ.40 kPe or moréwould ensure that the frost remains.

4B.12(b) (i) According to Trouton’s rule (eqn 3A.17)

A, ,H =85 K*mol™* x T, =85JK*mol™ x 3422K ={29.1 kJ mof*

(i) Use the integrated form of the ClausiG$apeyron equation (eqn 4B.11) rearranged to

(p,) A,H ( )
ARt
P, R O\T T
At T, = 342 2 K,p; = 1.000 atm [normal boiling point]; thus at 25°C
p, ) [ 291x10°Imol*) ( 1 1

Ll 000 am (83145 K mot) \342.2K 2982 KJ 1ot
and p,=e“*atm =[0.22atn].
[ p, ) (291100 3mol* ) [ 1 1)
AL80°C, 'nh 005 ath \ 83145 3k mor) “\ 3422k 3332K) ~ 0276

and p,=e’?®atm =|0.76atn}.

T ApM
4B.13(b) AT =T, (10MPa)-T, (0.1MPa)= p

AL ) [Exercise 4B.9(b)]

((27315K)x 9.9x 10° Pax 18.0g moi* )
6.01x 10* I mol™*
| 1 — - 1 _3]:—0.74K
0.998gcm® 0.915gcm

T:(10 MPa) = (273.15-0.74) K =[272.41K].

4B.14(b) AvaH = AvaU + Ava(pV) = 43.5 kJ mot*
Avar(pv) = PAygpV = p(vgas_vliq) ~ PVgas= RT [perfect gas]
AvapV) = (8.3145 J K™ mol™) x (352 K) = 2.9%10° J mol™*

Ao(PV)  2.93kJI mot*
Fraction= —22 == = -.067 =6.73percen
A, H  435kImol® P

AT =

Solutions to problems

4B.2  Use the definite integral forwf the ClausiusClapeyron equation [Exercise 4B.12(b)].
(p2 AvapH x[i_i\
o)~ %7,
At T, = (273.15- 29.2) K = 244.0 K (normal boiling pointy; = 1.000 atm; thus at 40°C



ol P \(2025x103Jmor1\[ 11
L1000atm1 \8.:3145 3K mor”) “\2440K ~ 3132K

and  p,=1.000 atmx €°%=|9

Comment. Threesignificant figures are not really warranted in this answer because of the
approximations employed.

4B4  (a) (a“—(')] - [a“—(s)] --S ()+S,(s)=-A, . S= _A%—USH [4B.12]

j =2.205

oT oT f
1
_ —6.01x10° Jmol* _ |-22.0 J K*mol?|
27315K
au(g)] (@t(')] -
b - =-S S,(h=-A,S=
(b) ( ot J, Lot/ OO E

_ —40.6x 10° I mol™*
~ 37315K
(©) w(1,-5°C) = p(s5°C) = u(1,-5°C) — 1(1,0°C) — {1(s-5°C) — 1(s,0°C)}
becauseu(l,0°C) =(s,0°C)
Thus  1(1,-5°C)— 1(s-5°C) =A(l) — Ap(S)
whereAu is the difference in chemical potential of a given phas&df compared to that at
normal freezing temperature.

- |-108.8 3 K* mol'?|

Aﬂz[a—“] AT =-S AT [4B.1]
T, m

so {141,-5°C) — 1(1,0°C)} H{ 1d(s75°C)— 1s,0°C)} =—AnsS AT
14(1,~5°C) - (s ~5°C) = —(+22.0 I K* mol ™) x (-5K) =

Sinceu(1,-5°C) > u(s-5°C), there is a thermodynamic tendency to freeze.

AyS AgH
4B.6 P _ Lu g sa)- S [4p.6)
Y TALV

TA V
Thus dT=—"—dp.
A H

fus

Integrate both sides:

fus

bot TA V TA V . . .
AT = I dT = Ipb°‘ m_s_dp=-"-t_ Ap [assuming the integrand is constant]

Trtop Pop A H A H
Now Ap pbot_ptop ,Ogh
so AT = Torgty Y
A H
_ (2343K) x (136gcm®) x (9.81ms?) x (10.0m)x (0.517 cmf mol™) . 1kg
2.292x10° J mol* 10° g
=0.071K

Therefore, the freezing point changeg284.4

4B.8 Integrating the Clausiu€lapeyron eqation [4B.10] yields an expression fg:In

In p = constant- —>—

Therefore, ploin p against 1T and identify—A,,H/R as the slope of the plot. Construct the
following table

6/°C 0 20 |40 |50 |70 |80 |90 | 100
T/K 273 | 293 | 313 | 323 | 343 | 353 | 363 | 373
1000K/T | 3.66 | 3.41| 3.19| 3.10| 2.92| 2.83| 2.75]| 2.68
In(p/kPa)| 0.652| 1.85| 2.87| 3.32| 4.13| 4.49| 4.83| 5.14
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Figure 4B.1
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The points are plotted in Figur84L. The slope is4569 K, so

-A_H
\Sp =-4569K or AvapH =|+38.0 kJ mot

The normal boiling point occurs pt= 1 atm = 101.3 kPa, or at pikPa) = 4.618, wich from
the figure corresponds to 1000TK# 2.80. Therefore], = (357 K (84°C) The accepted value

is 83°C.
4B.10 The slope of the solidvapour coexistence curve is given by

A_H
 _ A [analogous to 4B.9] s6_ H =TA_V 3—_?

dr  TA_V

Figure 4B.2

B%C
The slope can be obtained by diffetiating an equation fit to the coexistence curve (Figure
4B.2). Fit the data to an exponential function or take natural logarithritsegfressures and
make a linear fit to the transformed data. The fit equation is
p/Pa = 2.65910™'0 1687



S0 jp = (2.659< 10" Pa)x (0.1687 K*) x e*1**™* — 441Pa K" at 150 K.

The change in volume is essentially the volume of the vapour
_RT_(83145] K" mol™) x (150 K)
m p (2 659X 10—10 Pa) 01687x150

So A H®=(150K)x (47.7m%) x 441PaK" = 3.16x 10" Jmol* = [316 kJ mol*

=47.7m°

4B.12 dH=C,dT +Vdp implies dAH = ACdT+AV dp,
whereA signifies a difference between phas&lang a phase boundarypdnd dr are related
by
dp _
[4B.6 or 4B.9]
dT TAV
Therefore,
dAH :(AC +avx 28 }de[AC +ﬂ}dT and B _ac A0
P TAV PT dT PT

Then, since
d(AH) 1dAH AH 1(dAH AH)

dTLTJTdT T2 T dT T
substituting the first result gives

d [AHJ AC,
dT T
Therefore,
AH) AC, daT B
d(T)—#— ACp dInT

4B.14 Equation 4B.3 gives the vapour pressure of a liquid under an additionaldapgsuré\P:

V. (I)AP/RT

p=pe"
The applied pressure is the hydrostatic pressure of the liquid oegthgrdepttd:
AP = pgd
The molarvolume of the liquid is
Vi) =M/ p
Substituting into eqn. 4B.3 yields
For a 16m column of water at 25°C,

Mgd _ (18.02x 10° kg mol*) x (9.81 m §°) x (10 m)

ia ~7.1x10*
RT (8.3145 J K* mol'?) x (298 K)
so P gt 147.1x10"
p

That is, the fractional increase in vapor pressufelis10 or[0.071 percen

4B.16 In each phase the slopes of curves of chemical potential plotted against terepseat

ou| B
%) -5

The curvatures of the graphs are given by

(*u)  [0S,)

\a72) oo\ar
To evaluate this derivative, conside3 @ constanp:

oo B _oH _CAT (on) _ (8S,) _ Com

T T T LaTzJ . oT ), T

Since C,n is necessarily positive, the curvatures in all states of matter are ndgessari
negative.C,  is often largest for the liquid state, though not always.niy event, it $ the
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ratio C, /T that determines the magnitude of the curvature, so no general answergigarb
for the state with the greatest curvature. It depends upon the substance.

4B.18 S=YTp)
(6S) (8S)
9S=(51) dTWa_J d
(6s) C (o) _ [(av)

(6TJ =2 [Problem 4B.16] La_pJ J [Table 3D.1} —aV_

dg,, =T dS=C,dT —T(avj

() ¢ 1ve P) _lc oy Ael [4B.6]
LaT P \ar) = AV

S trs

Integrated activities

4.2 (a) The phase diagram is shown in Figl4el.

Figure 14.1

0 100 200 300 400 500 600
T/K

(b) The standard melting point is the temperature at which solid and liquid eqgilibrium
at 1 bar. hat temperature can be found by solving the equation of thelgpliid coexistence
curve for the temperature:

1 =pg/bar + 1000(5.60+11.72)X .
Put the equation into standard form:

11723 + 5600 + (4.36%107 1) = 0
The quadratic formula yields

_ -5600:{ (5600)- 4 11727 (}1’) ~1 (14 4}
2x11727 2(1)

The square root is rewritten to make it clear that the square root is ofrﬂne{]fera}vz, with

@= 1; thus the numerator is approximatehl + (1+§a):%a, and the whole exprsi®n

reduces to
~1/5600 = 1.79x107™* ,
Thus, the melting point is
T = (1+x)Ts = (1.000179) (178.15 K) 5178.18K|
(c) The standard boiling point is the temperature at which the liquid anduvagre in
equilibrium at 1 bar. That temperature can be found by solvingdbation of the liquid
vapour coexistence curve for the temperature. This equation is tooicaegplto solve



4.4

analytically, but not difficult to solve numerically with a spreseist. The calculated answer is
y = 0.6459,

) T = 0.6459x 593.95 K :

(d) The slope of the liquidzapour coexistence curve is given by

dp  AH dp
4B.9] soA H TA V—
dT TAvapV [ ] Ve dT

The slope can be obtained by differentiating the equation for the comestarve.
dp_ dinp_dinpdy

dr = dT " dy dT
dp (10 413 2 _(1.70)x (4.7224)x (1 y)‘”0
aT /
(p)
(%)

Substituting thevalue ofy at the boiling point yields,
dp =2.848x107° barK* = 2.848kPa K"

dT
((30.3-0.12)dn? mol™)
and A,_H =(3836K)x 2.848kPaK") =|33.0kJ mol*
vap ( ) L 1()()()(jrr?r11 J ( ) IIIIIIIIIIIIIII
(a) The phase boundary is plotted in Figi4e.
Figure 14.2
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(b) The standard boiling point is the temperature at which the liquid is in equilibvitinthe

standard pressure of 1 bar (0.1 MRajerpolation of the plotted points givés=[112K|.
(c) The slope of the liquidvapor coexistence curve is given by

I — _ [4B.9 A H— TA V
SO
T T V [ ] ( vap )

vap

The slope can be obtained graphically or by fitting tbmtp nearest the boiling point. Then

do =8.14x10°MPaK™
dT

-1
SO A, H = (112K)x ((8'89_186003(18:?) drj mol } x (8.14kPa K*) =|8.07 kJ moti*
m
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