5 Simple mixtures

5A  The thermodynamic description of mixtures

Answers to discussion questions

5A.2 As noted in Topic 5A.1(b),@ = dW,gq max(Wherew,gyqstands for additional (neexpansion)

work) for systems at constant temperature and pressure. Tiegj®A08]
Wadg,max= #adna + ugdng +

Thus norexpansion work can arise from the changing composition of a systenicatlyys
it should not be surprising that at leasergycan be changed by changing composition, by
a chemical reaction transforming a species into oné ithamore or less favored
energetically. In an electrochemical cell, where the reaction takes place at twct diggis,
the electrical work of transporting charge between the electrodes can be tracedés éha
composition as products are formed frozactants.

5A.4 See Topic 5A.3(a)ln both cases, the vapor pressure of a component in a solution is

proportional to its concentration (mole fraction) in the solution, at leasteifimit of low
concentration:

Py < X3
If the proportionality constaris the component’s vapor pressure as a pure substance, then
Raoult’s law is a good approximation [5A.21]. Substitution of Raoult’'sifde eqn 5A.20
for the chemical potential yields eqn 5A.22:

ta = pa* + RTIN Xp
If Raoult's law applies to both or alomponents of a mixture over a large range of
composition, then we call the solution ideal. If, on the other hand, balgdlvent obeys
Raoult’s law, and it may only obey it in the limit of mole fractions close twelcall the
solution idealdilute if the solutes obey Henry's law [5A.23]. Substitution of Henry's law
into egn 5A.20 for solutes yields eqn 5E.8:

. K
Uy = pg + RTINX, where 40 = u + RTIn—2 [5E.7]

B

Solutions to exercises

5A.1(b) The partial molar volume is

oefin] S0

Right away we see tha, = @because/ is independent afi, [dx/dn, = 0]

3
V, = (-22.5749 % 0.56892+ 3 0.010€3+ x4 o.oozs;{c—mlj
mo

=|(-22.5749 1.1378¢+ 0.03089+ 0.0098cm mol®|

5A.2(b) Let A stand for water and B for Mg3(@q)

(V) (ox)
vel &) =G E )
b n, [axj 1
Now x=-—F=—"— SO | Ta g e
b nM.b ong n,M,b

3
and V, =2x34.69 (x—0.070)—"_
A MAb
Evaluate this expression fdr = 0.050 mol kg* (x = 0.050), recalling that the original
expression fow applies for 1.000 kg of water.€., for nnM, = 1.000 kg). The result gz =
:
The total volume cagisting of 0.050 mol of MgS£and 1.000 kg (55.49 mol) water is
V =1001.21 + 34.69 (0.056-0.070¥ = 1001.23 crh.
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5A.3(b)

5A.4(b)

5A.5(b)

The total volume is also equal to
V =Vana + Vg [5A3] .

_ o 3 —
Therefore,V, :V r:/BnB _1001.21 cm—(~1.4cm®) x (0.050 mol)_ 1804 on? mol

N 55.49 mol

Question. V, is essentially the same @& molar volume of pure water, but cleavly is
not even approximately the molar volume of pure solid MgS@hat meaning can be
ascribed to a negative partial molar volume?

Use the Gibb$uhem equation [5A.13], replacing infinitesimal changes in chemical
potential (¢lz;) with small finite change${:;)

n 0.22n
Sty » ——2-8p1, =————2x(-15 Jmol™*) =|+3.3 J mol*

Ny Ny

The Gibbs energy of mixing perfect gases is
AmixG = NRT(Xa In Xp + X5 In Xg) [BA.16] =pV(Xa In Xa + X5 In Xg) [perfect gas law]
Because the compartments afequal size, each contains half of the gas; therefore,

- Ipl -
AmixG—(pV)x(zln 2+ 2In Z) pVin 2

=—(100x 16 Pax (250cﬁ1()m16%} In2- 17.3Panj=_ 17

-A
A, S=-NRx, Inx, +x,Inx,) [5A.17]:$XG=M= +0.635 J K*

273K
A, S=-nRY xInx, [5A.17]
J

We need mole fractions:
nJ
N,
J
Since we have mass percentages, 100.0 g is a convenient sample size. The aiheaaht
component are

X, =

1 mol
n, =75.52 gk — > _2 696 mo
: 2x14.007 g
1 mol
n, =23.15 g — > ~0.7235 mo
: 2x15.999 g

n =128 g« _ 60320 mo
39.95 g

Ar

1 mol —0.001G6 mol
(12.01% 2% 15.999) g

The mole fractions are

3 Ny, 3 2.696 mol 3
"0, 4N, +n, +Ny,  (2.696+0.7235+0.0320+0.001() mol

Similarly, X, = 0.2096, X, = 0.00928, and<COZ =0.0003cC.

Once we have mole fractions, the convenient sample size is for a tota afole of gas:
A, S=- RZ xInx, =—-R{(0.7809In0.7809) (0.2096In0.2096)
J

Neo, = 0.046 gx

X 0.7809

+(0.009281n0.00928) (0.000301n0.00030)

=0.566R=+4.710 J K mol*
From the data in Exercise 5A.5(a), the entropy of mixing was

AmixS: _RZ XJ In XJ
J
=—R{(0.781In0.781)+ (0.210In0.210) (0.0094In 0.0094)
=0.56R=+4.70 J K' mol™*
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5A.6(b)

5A.7(b)

5A.8(b)

5A.9(b)

5A.10(b)

5A.11(b)

So the difference is

A S(b)-A,. Sa)=[0.0015 R=|+0.012 JK* mol |
Comment. We can readily see that the data in this exercise (b) includes thée@®
which contributes-R(0.00030 In 0.00030) = 0.00R%0 the entropy of mixing-more than
the total differene. The fact that the mole fractions of the other componentslighdly

smaller in part (b) to make room for the small amount of g&tly offsets the direct CO
term itself.

Let 12 refer to 1,2imethylbenzene and 13 to id8nethylbenzene. Bause the two
components are structurally similar, we assume Raoult's Law [SAZdljes.

Protal = P12 + P13 = X12P12* + Xi3p13* = (0.500)(20 + 18) kPa = 19 kPa.
The mole fractions in the vapor phase are the ratios of partial to total pressur

P, %qiP (0.500)(20 kPa) B
= = = £10.53 and X =loa
Xlzvvap ptotal ptotal 19 kPa vap s

Total volumeV = NV + NgVi = N(XaVa + XgVg), Wheren = na + ng
Total massn = nyMu + NgMp = N{XaMa + (1-%2) M3z}

So n= m
X, M, + (1-x,)M,

- 1.000x 10°g
~ (0.3713)x (2411g mol*) + (1- 0.3713)x (1982 g mol™)
V =n(x,V, +x,Vy)
and = (4.670 mol)x{(0.3713)x (188.2)+ (1- 0.3713)x (176.14)} cn? mol™

8435 cni]

Let W denote water arid ethanol. The total volume of the solution is

V = nwVw + NeVE
We are giverVg, we need to determing, andng in order to solve fo¥,, for
_ V-nV,

Ny

Take 100 crhof solution as a convenient sample. The mass of this sample is

m= pV = (0.9687 g cnt) x (100 cnf) = 96.87 g .
80 per cent of this mass water and 20 per cent ethanol, so the moles ofrepohert are

_ (0.80)x (96.879) _ (0.20)x (96.879)

=4.670mol

V,

W

—=4.3mol and n, = *-————+/=0.42 mol*.
18.02g mol 46.07g mol
V-nV - !
v, - r\NE e _ 100 e (0.42:1;3Ir)r>]<0(|52.2 cm mol™) _[18 err? ol

Henry's law is [5A.23]pg = xgKg, S0 check whethexs / Xz is equal to a constarig)

X 0.010 | 0.015 | 0.020

p/kPa 82.0 122.0 | 166.1

(p/kPa) /x | 8.2x10° | 8.1x10° | 8.3x10°

HenceKg=p/x= |8.2x103 kPé(average value).

Refer toBrief Illustration 5A.4 and use the Henry’s Law constant from Table 5A.1. Henry's
law in terms of molal concentration i = bgKg. So the molal solubility of methane in
benzene at 25°C in equilibrium with 1.0 bar of methane is

Per, 100 kPa

b = =
Ch K 44.4x10° kPa kg mol*

CH,

=2.25x10° mol kg™

To find the molar solubility, we assurttgat the density of the solution is the same as that of
pure benzene, given at a nearby temperature (20°C) in Table 0.1:

[CH,]=h 2.25x10° mol kg x 0.879 kg dr#* =|2.0x 10° mol dm’®

(:H4'0benzene=

With concentrations expressed in molalities, Henry’s law [5A.23] inespg = bgKs.
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Solving forbg, the molality, we havey, = m K

wherepy = 1 atm = 101.3 kPa
For N, K = 1.56¢<10° kPa kg mol* [Table 5A.1]

_ 0.78x101.3 kPa
~ 1.56x 10° kPa kgmol™*
For Oy, K = 7.910" kPa kg mol* [Table 5A.1]
_ 0.21x101.3 kPa
 7.92x10" kPa kgmol ™

= |5.1>< 10* mol kg’1|

—[2.7x10* mol kg |

5A.12(b) Asin Exercise 5A.11(b), we have

5A.2

5A.4

b, = Py _ 2.0x101.3 kPa = 0.067 mol k'
K 3.01x10° kPa kg mol
Hence, the molality of the solution is about 0.067 mof-k§ince molalities and molar

concentrations (molarities) for dilute agueous solutions are numeriappyoximately

equal, the molar coeatration is aboud.067mol dni .

Solutions to problems

C =1, hence, according to the phase rule (eqn 4AAC-P+2=3-P

Since the tube is sealed there will always be some gaseous compouantibniwg with the
condensed phases. Thusemhiquid begins to form upon melting,= 3 (s, |, and g) an& =
0, corresponding to a definite melting temperature. At the transitiamtwrmal liquidP = 3
(I, I', and g) as well, so aga= 0.

Letting B stand for CuSgaq), the partial molavolume of the dissolved salt is
™)
ong Jn

We will determineVy by plotting V againstng while holdingn, constant. We can find the
volume from the density:
m, +M

MM o V= .

\ p
The data include the composition of the solution expressed as mass perbantis(T
m(CuSQ)/g, the mass in grams of B dissolved in 100 g solution, is numerieallal tow,
defined as mass of B over total solution mass expressed as a perceuty. flot, we nedng
per fixed amounbf A. Let us choose that fixed quantity to ig = 1 kg exactly, sag is
numerically equal to the molal concentration. So

Vv, = ( [5A.1]

p:

m

n =—

B MB
such that M x100=w.

m, +m
Solve formg:

__wm,

™~ 00w’
Draw up the following table of values ok, ng, andV at each data point, usimg, = 1000 g.
W 5 10 15 20
pl(g cnd) 1.051 | 1.107 | 1.167 | 1.23
me/g 52.6 111.1 | 176.5 | 250.0
ng/mol 0.330 | 0.696 | 1.106 | 1.566
Vicn? 1001.6| 1003.7| 1008.1| 1016.3
Ve/(cmPmol™®) | 291 [8.21 | 14.13 | 20.78

A plot V againstng is shown in Figure A.1.
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Figure 5A.1

Viem?

5A.6

1018

1016
1014
1012
1010
1008
1006

1004

1002 |

1000 — — —
0 02 04 06 08 1 12 L4 16 18

Ag/mol

To find the partial molar volume, draw tangent lines to the curve atcddbh data points and
measure the slope of each tangent. Alternatively, fit the curve tmlaopnial and
differentiate the fit equation. A quadratic equation fits the data quite well

Vicn® = 7.2260g/mol)? — 1.851g/mol) + 1001.4 ,

(Vv Icm®)

) V./emP=| ———| =2x7.226x(n, /mol)-1.851
B kanB/moIJ - < (g )

Comment. Selectingm, = 1000 g is arbitrary. If you chose a different value rfgr your
table will have different values farg, ng, andV; however, you should arrive at the same
values forVg.

FromExamplebA.1, we have

Ve/(cm® mol™) = 54.6664-0.7278% + 0.084468°
wherex = ng/mol mixed with 1.000 kg water. Thus,s alsoequal to the numerical value of
the molality. To find the minimum iNg, differentiate it and set the derivative equal to zero:

dV,(cm® mol*
dVelem mol) _ 5 72788 2x0.084468& =0

dx
Thus x= _0.72788 =4.3086 SO b =14.3086mol kg™
2x0.084468

This value is consistent with Figure 5A Btbe main text.

5B The properties of solutions

Answers to discussion question

5B.2

All of the colligative properties result from the lowerinfjtbe chemical potential of the
solvent due to the presence of the solute. This reduction takes theferm,” + RTIn xa
or ux = up- + RTIn aa, depending on whether or not the solution can be considered ideal.
The lowering of the chemical potential results in a freezing point dg@preand a boiling
point elevation as illustrated in Figure 5B.6 of the tdth of these effects can be
explained by the lowering of the vapour pressure of the solvent in solutiomo dine
presence of the solute. The solute molecules get in the way of the soigltules,
reducing their escaping tendency.

Solutions to exercises

5B.1(b)

In Exercise 5A.10(b), the Henry’'s law constant was determined for coatens
expressed in mole fraction&z = 8.2<10° kPa. Thus the concentration must be converted
from molality to mole fraction



5B.2(b)

5B.3(b)

5B.4(b)

5B.5(b)

10009

70.1g o =13.50mo

m, = 1000 g, corresponding to, =

Thereforex, = 0.25 mol =0.018
(0.25mol)+ (13.50 mol)
The pressure is

Pe = KexXs [5A.23] = (0.018)x (8.2x10° kPa) =[1.5x10° kP3.

We assume that the solventpﬂnpanol, is ideal and obeys Raoult’s law [5A.21].

xA(soIvent)= - _49.62 =0.9924
p

~ 50.00
SinceMa(C3HsO) = 60.096 g mot,

250 ¢
n=———
60.096 g mof

n,
X, = soO n+n =—
A n,+n A B X,

=4.16 mol

- \=3.1Z>< 102 mol
0.9924 )

m, 8.69 g :
and M, =—=————~ =273 g mol
oo " 3Toe10* o

B

(1 ) (
Hencen =n, kx— 1J=4'16 molx

Let B denote the compound and A the solvent, naphthalgre.6.94 K kg mol* [Table
5B.1]

w, =M
nB
Ng =My bg where b, = AK—T [5B.13]

f

_ MK, _(5.009)x(6.94 K kg mol') 1
Th M, =178 ])
us mAT  (0.250kg)x (0.780K)

From the osmotic pressure, compute the concentration, and from the catimentne
freezing point. According to the van't Hoff edioa [5B.16], the osmotic pressure is

n
I7=[B]RT o) [B] = —B
RT V.

soln
The expression for freezing point depression [5B.13] includes the mdiakther than the
molarity [B]. In dilute solutions, the two concentration measureseadily relagd:

_n ong B[O
mA Vsolnpsoln psoln RTpsoln

The freezing point depression is

K7

RTpsoln
The density of a dilute agueous solution is approximately that of water:
p~1.0gem>=1.0c10° kg m’°
(L.86K kgmol ) x (99x 10° Pa)
(8.3145 J K* mol™) x (288K)x (10°kgm )

Therefore, the solution will freeze at abp@.077°G:

AT =K,b~ where K;=1.86 K mof'kg [Table 5B.1]

So AT= =0.077K

A, G =nRT > xInx, [5A.16] and
J

mi.

A, S=-NRY. xInx; [5A.17] = —mx—
J
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5B.6(b)

5B.7(b)

5B.8(b)

n=2.00 mol and Xnexane= Xheptane= 0.500
Therefore,

A, G =(2.00 mol)x (8.3145 J K* mol) x (298 K)x 2x (0.500 In0.500

—_3.43<10° J=
and 8, 5=tmC- 13450

T 298 K
For an ideal solutiompmxH = @ just as it is for a mixture of perfect gases [5A.18]. It can be
demonstrated from
-A, G

Ay H=A,G+TA S=A_ G+T [$J =0

T

(i) Benzene and ethylbenzene form nearly ideal solutions, so.

AmixS=-NRTXs In X + X5 IN X5) [BA.17]
We need to differentiate eqn 5A.17 with respectptand look for the value of, at which
the derivative is zero. Sineg = 1—X,, we need to differentiate

AmixS: _nR-I{ Xa In Xa + (1_XA)In(1_XA)}

This ives( i _dlnx:;)
gives| using® >

X

dA S X

—m— = —nRlIn x, +1-In(1-x,) -1 =-nRIn—2
dx, Rin, ( S 1-Xx,

which is zero whenx, :. Hence, the maximum entropy of mixing occurs for the

preparation of a mixture that contains equal mole fractions of the two cemigo

(ii) Because entropy of mixing is maximizehenng = ng (changing to notation specific to
Benzene anéthylbenzene)

MM
M. M

E B
This makes the mass ratio

ﬂzﬂ_ 78.11 g mot* :

m M. 106.17 g mof

The ideal solubility in terms of mole fraction is given by eqn 5B.15:
A H
nx, < 2uwf (1 1)

P R LTf T

( 1)
_ 5.2x 10° Jlmofl) x( 11 ] __0.089
8.3145 J K" mol 600.K 553K
Thereforexe,= €°%9=0.92 .
n n.x , X
Xop £b implying that n, =-2-Fb My Yo

N + Ny, 1- X M Bi 1- X

Hence the amount of lead that dissolves in 1 kg of bismuth is

_1000g¢g 0.92 :

nPb - 209 e _
gmol* 1-0.92
or, in Mass unitsey, = NpyxMp, = 52 Molx 2079 mol™ = 1.1x10* g =[L1kd.
Comment. A mixture of 11 kg of lead and 1 kg of bismuth would normally be regarded as a
solution of bismuth in lead, not the other way around. It is unlikedy such a mixture
could be regarded as an ideal dilute solutiofeafl in bismuth. Under such circumstances
egn 5B.15 ought to be considered suggestive at best, rather than quantitative

The best value of the molar mass is obtained from values of the data exépolatro
concentration, since it is undergtdondition that the van’'t Hoff equation (5B.16) applies.



IN = ngRT so 7="RT_CRT \\herec=mV .
B MY oM

But the osmotic pressure is also equal to the hydrostatic pressure

7= pgh[1A.1] so h{ﬂjc
pgh[1A.1] oM

Figure 5B.1

e PSP AP S

...................

¢/(mgem™)
Hence, ploth againstc and identify the slope asg—-ll\—/l. Figure 3.1 shows the plot of the
P

data. The slope of the line is 1.78 cm /(g Jrso

RT _178 C;nzl.78 cmdm gt =1.78x10% m* kg™
POM g dm
Therefore,
RT

M= 2 41
(pg) x (1.78x10° m" kg™)

1 1
(8.3145 J K* mol!) x (293K) _[14.0 kg mot

© (1.000x 10° kg m %) x (9.81 m §%) x (1.78x 10 m* kg™

5B.9(b) In an ideal dilute sotion the solvent (CGJ A) obeys Raoult’s law [5A.21] and the solute
(Br,, B) obeys Henry's law [5A.23]; hence

p, =X, p =(0.934)x (23 kPa)=|215 kPa
Pe = xgKg = (0.066)x (73 kPa)
Py = (21.5+4.8) kPa={26.3 kPa

The composition of the vapour in equilibrivmith the liquid is

P, _215kPa P. _ 48kPa
- Pr _215KPa_[pgp d - Pe _48kPa_[gjg
Yo~ b 233 kPa and Ve T T 233 kPa

5B.10(b) Let subscript 12 denote the 1,2 isomer and 13 the 1,3 isomer. Assume thaidtusadiy
similar liquids obey Raoult’s law [5A.21]. The partial pressures®two liquids sum to 19
kPa.

P13+ Pr2= P =XigP1z + XizP12 = Xaghrs + (IXi3g)Pr2
Solve forx;s:

_ P-p, (19-20)kPa_
T T p, (18-20)kPa

and X12=1-0.5 : .

The vapour phase mole fractions are given by eqn 1A.8:




p13 X]_3p13* (OS)X 18 kPa —
=" = =(0.47
=7 p 19 kPa 0.47]

p,,  (0.5)x20.0 kPa ——=
and vy, —22Pe _ _[0.53].
Yio p 507 kPa

5B.11(b) The partial vapour pressures are given by Raoult’s law [5A.21]:
Pa = XaPa and  pg=xgPs = (1xg)ps -
Eqgn 1A.8 relates these vapour pressures to the vaiase mole fractions:

_ P X, P
ptotal XA p; + (1_ XA ) p;
Solve forxa:

Ya

B Ps _ 82.1 kPa :-m
e p* +;— p* (82.1+@—68.8\ kPa
B A L 0.621 J

Ya
and xg=1-x,=1-0.662 50.338.
The total vapour pressure is
Protal = XaPa + XgPs = 0.662x 68.8 kPa + 0.338 82.1 kPa 73.3kP3.

5B.12(b) (i) If the solution is ideal, then the partial vapour pressures are given byt'Rdaw

[BA.21]:
PA° =XaPa = 0.4217x 110.1 kPa = 46.4 kPa

and pg° =xgPs = (1Xa)ps = (1-0.4217)x 76.5 kPa = 44.2 kPa .
(Note the use of the symbol ° to emphasize that these are idealizeiiegiamé do not yet
know if they are the actual partigpour pressures.) At the normal boiling temperature, the
partial vapour pressures must add up to 1 atm (101.3 kPa). These ideal vagqiat
pressures add up to only 90.7 kPa, sgsthlationis notideal.
(i) We actually do not have enough informatim compute the initial composition of the
vapour above the solution. The activities and activity coefficients are défindte actual
partial vapour pressures. We know only that the actual vapour pressusesum to 101.3
kPa. We can make a furthessamption that the proportions of the vapours are the same as
given by Raoult’s law. That is, we assume that

y —y,ee P2t 46.4kPa 1o
P+ Py (46.4+ 44.2) kPa
and y,=Yy,°= Pe 44.2 kPa 0.48§.

P,°+P,° (46.4+44.2) kPa

By Eqgn. 1A.8, the actual partial vapour pressures would then be
Pa = YaProt = 0.512 x 101.3 kPa

and  Pg = YaProw = 0.488x 101.3 kPa .

To find the activity coefficients, note that

y, = % — P iég—t?‘: 1117 and .= %a: 1117

D, P ) a . a
Comment. Assuming that the actual proportions of the vapours are the aathe ideal
proportions begs the questione( arrives at the answer by assumption rather than
calculation). The assumption is not unreasonable, though. It isadeptito assuming that
the activity coefficients of the two components are equal (whemimgiple they could be
different). The facts that the difference between ideal and actual total nerésselatively
small (on the order of 10%), that nateal behavior is due to thiateraction of the two
components, and that the two components are present in comparableegueatitbine to
suggest that the error we make in making this assumption is fairly smal
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5B.13(b) (i) If the solution is ideal, then the partial vapour pressures are given byt'Rdaw
[5A.21]:
Ps = XgPs = 0.50x 9.9 kPa =.95 kPa
pr = xrpr = 0.50x 2.9 kPa = 1.45 kPa
The total pressure is

Prota = P + Pr = (4.95 + 1.45) kPa :

(ii) The composition of the vapour is given by

P, 4.95kPa
= = = -0.77
Ye P, 6-4 kPa

p. 1.45 kPa
and =—L = = [0.23
¥ P, ©-4kPa
(i) When only a few drop of liquid remain, the equimolar mixture is almost entirely
vapour. Thu% =yr =0.50, Wh|ch |mpI|es that
Ps =XePs = Pr=XPr = (1%)Pr
Solving forxg yields

P, 29kPa
®op,+p, (9.9+2.9) kPa
The partial vapour pressures are

Ps = XsPs = 0.23x 9.9kPa = 2.24 kPa pr [vapour mixture is equimolar] /2 -
The total pressure is

Protal = 20 = -
Comment. Notice that an equimolar liquid mixture yields a vapour compositiceciiljr
proportional to the vapour pressures of the pure lig@dsversely, an equimolar vapour
mixture implies a liquid composition inversely proportional to those vapm@ssures.

X

Solutions to problems

5B.2  The apparent moIaIity is

b =— [5 13]= __00703K ___ =0.0378 mol kg
app Kf 1.86 K/(mol kg*)

Since the solution molahty is nominally 0.0096 molkin Th(NQ),, each formula unit
supplles00378 . (More careful data, as described in the original reference gives 5

0.0096
to 6 ions.)

5B.4 (a)LetV; be the molar volume gdure propionic acid and/; be itspartial molar volume in
the mixure (andV, andV, the analogous quantities for oxane). The volume of an ideal
mixture is additive
Vel = nVy" 4 nyVsy
so the volume of a real mixture is
V= Ve VE
We have an expression for excess molar volume in terms of mole fracliorcompute
partial molar volumes, we need an expression for the excess volumerasienfof moles

a(n-n,))
nn, )

VE = VE =
(n+ )V, nﬁdaﬁ

c om0 a(n-n))
V=nV V.
S0 nll+n22+nl+nzka0+ — J
The partial molar volume of propionic acid is
_(avJ IRV S €. VL
0 (n+n,) (n,+n,)

That of oxane is

=V, + 8% +a,(3x — %)%

2

_(ﬂ VRO S G 12
L@n) n1+n2) (nl+n2)

V, +ax +a (X —3%,)X

10



(b) We need the molar volumes of the pure liquids
V- M, _ 74.08 g mol'

’ =23 T _76.23 cni mol*
p, 097174 gcm

. M . t
and vV, :—2=M:99.69 cni mol™
p, 0.86398 g crrt

In an equimolar mixture, the partial molar volume of propionic acid is

V, = 76.23+ (~2.4697)x (0.5) + (0.0608)x{3(0.5)— 0.5} x (0.5¢ cn* mol™*
=175.63 cm mol™

and that of oxane is

V, = 99.69+ (—2.4697)x (0.5 + (0.0608)x{0.5— 3(0.5)}x (0.5¢ cm® mol™*
=199.06 cm mol™

5B.6 In this mixturex = 0.250, so

R'I'(O.250)(1—O.250){0.4857—0.1077(0.5091)+0.0191(0.5091)2} =0.1021RT
Therefore, since

AmixG = AmixG®® + nGF = nNRT(Xa In Xa + Xg In Xg) + NGE[5B.5 and 5A.16]
AmixG = nNRT(0.250 In 0.250 + 0.750 In 0.750) + 0.10RM=—-0.46(hRT

AmixG = —0.460x 4.00 molx 8.3145 J mot K™ x 303.15 K =—4.64kJmol .

La J [5A.4]= 'dea'+kaa (nGE)J [5B.5] where 4=

A

.+ RTInx, [6A.22]
( anGE\ (oG*)

(on, ) =¢ e,

(8X (@G\

&) o),
where (Zij :i( O, \ 1

_ N _ Ny _ Xs X5
on, Ln +nJ n+n, (n +n) (n +n)*> n,+ng

Hence La”G j G

= gRTx (1-x,)+(1-x,)gRT(1-2x,)
After expanding and collectlng terms, we arrive at
[ onGE )
a2 | =gRT(1-x,)*=gRT
(anAJn gRT(1-x,)* = gRTY

B

Therefore, i, =

U, + RTInx, + gRT¥

This function is plotted for several values of the parangetef-igure B.2
Figure 5B.2
8

—a—g=0.1
——p=03
g=

—o—p=3

—o—g=10

(pa—u3)/RT
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5B.10 By the van't Hoff equation [5B4]
I7T=[B]RT = CRT
M

Division by the standard acceleration of free fllgives
7 _c(R/QT
g M
(a) This expression may be written in the form
7 =CRT
M

which has the same form as the van't Hoff equation, uuttit of osmotic pressuré?) is
now

force/area  (mass length)(area timé) mass
length/ time? length/ time” area

This ratio can be specified in g GnLikewise, the constant of proportionalif Y would have
the units ofR/g.

energy K'mol™ _ (mass length/ time?) K " mol™*
length/ time? length/ time?
This result may be specified .
m _ R_8314473K" mol*
g 9.80665m¢&’

= mass length K mol™*

—0.847840kgm K* mol | 10°0} (10 cm)
L kg ) m

=|84784.0gcmK* mol’1|

In the following we will drop the primes giving
7= CRT
M
and use thé7 units of g cm? and theR units g cm K* mol™.
(b) By extrapolating the low concentration plot &f/ ¢ versusc (Figure B.3(a))to c = 0 we
find the intercept 230 g cHi(g cn). In this limit the van't Hoff equation is valid so

Figure 5B.3(a)

Polyisobutylene n chlorobenzene
at low concentrations

500

Intercept: 230 gem 2 /gem ™

450

400

(1Ifc)f(gem ng cm 3)

300

%]
h
=

LANLIL A L B B O B RO

200 1 | 1 | 1 | 1
0.000 0.010 0.020 0.030 0.040

¢/{gem J}

RT

= =intercep! or RT
M

M=—RL_
intercept
12



—1 -1
__RT _ (847840gcm K™ mol™) x (29815K) _ 11x1C° g mol”
intercept (230gcm?)/(gem®)

(c) The plot of 77 / ¢ versusc for the full corcentration range (FigureB53(b)) is very
nonlinear. We may conclude that the solvent is good. This may be due tonff@anmature
of both solvent and solute.

Figure 5B.3(b)

o 41}

Polyisobutylene in chlorobenzene

e

(IT{c)/em

o b L o b aa by

0
0.00 0050 0100 050 0200 0250 0300
¢f(gem *)

(d) The virial analogue to the van’t Hoff equation (eqn. 5B.18) rearranges
I7/c=(RT/M)(1+B'c+C'c?)
SinceRT/ M has been determined in part (b) by extrapolation%d), it is best to determine
the second and third virial coefficients with the linear regression fit
(I7/c)/(RT/M)™
c
R=0.9791.
B' =[21.4cm’ g'; standard deviation = 2.4 érg™ .
C =[211cn?’ g4 standard deviation = 15 érg 2.
(e) Using 1/4 forg and neglecting terms beyond the second power, we may write

() -5 3l

=B'+C'c

c M 2
We can solve foB' , theng(B')?*=C' .
(Q)l/Z
C 1-1p
(ﬂ)“ 1 5 B'c
M

RT/ M has been determined above as 230 g/¢gncn®). We may analytically solve fd&’
from one of the data points, sa§f,/ c = 430gcm? /gcm™ atc = 0.033 g crit.

(430gcm? /g em?)
(230g cm?/g cm’3J

~1= % B’ x (0.033 g cm?®)

13



—
~_ 30
—

~— 2.0

 2x(1.367-1)
0.033gcm’

C'=g(B')*=025x(22 cm’ g*)*=123 cnf g~

!

=22cm g+

12 RT 12
Better values oB’ andC’ can be obtained by pIottiné;%) /(V) againstc. This plot is

shown in Figure B.3(c). The slope is 14 chg™ B’ =2 x slope =28 cnt g . C' is then

196 cn g?|. The intecept of this plot should theoretically be 1.00, but it is in fact 0.916

with a standard deviation of 0.066. The overall consistaridje values of the parameters
confirms thag is roughly 1/4 as assumed.

Figure 5B.3(c)
6.0

5.0

¢/(gem™)

5B.12 TheGibbs energy of mixg an ideal solution is [5A.16]

AmixG = nRT(XA In Xa T Xg In XB)
The molar Gibbs energy of mixing is plotted against compositionefegral temperatures in
Fig. 3B.4. The legend shows the temperature in kelvins.

Figure 5B.4
0
500
10000 \ \"\\‘\
? 1500 \\‘\'\\ /'/1 ' =300
= -l { =350
NENNS ==
2000 N L\\L-.__‘ _A/ 4501
2 v =500
2500 g — ——r .
\“"‘“—H-,.__-—-'/o/
=300
" 0 [N} 02 03 04 0s .6 o7 [ 09 1

5B.14

The composition at whicthe tempefature dependence is strongest is the composition at which
the function has its largest magnitude, namgly xg = 0.5,

The theoretical solubility [5B.15] is
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0 xB=exp[ J of -2

and % = |exp| AfUSH ex;{ AfusH x Afus|;|
aT RT RT RT
This expression can be plotted as a function of temperature fousaaues of the enthalpy

of fusion and the freezing temperature. The dependence on the freezing tempisratur
relatively uninteresting, though, since it enters into a fabttris independent of temperature,

namely exp AusH
RT,

So we will ignore the effect of the freezing temperature and simply pitdTdwith this factor
divided out. That is, in FigureBb5, we plotf(T) vs. T for several values of Ag,sH betveen 1
and 10 kJ mof, where

e

RT?

FigurenE‘B.S

5C.2

00018
(LK 6
(0014
(i 2
a hiNp]
00

00006

10004

10 ki mot + - —
0.0062 / |

o

Note that the function does not appear to consistently as we increase AgH. This apparent
inconsistency would be removed, though, if we plotted over a teraperainge that extende
back toT = 0. The function has a maximum because the exponential factor increaass dow
constant value of 1 with increasing temperature while the other fact@adesrtoward zero.
The higher the value of AgH. the higher the temperature at whi€h) is maximal and the
lower the value of that maximum value. For AgeH = 1 or 2 kJ mot, the maximum occurs at
temperatures lower than those shown and for AgsH = 10 kJ mot* it occurs at a higher
temperature than those shown.

5C Phase diagrams of binay systems

Answers to discussion question

A low-boiling azeotrope has a boiling temperature lower than that of eithgrocemt, so it

is easier to get the molecules into the vapor phase than in a “normataZeotropic)
mixture. Therefore, the liquid phase has less favorable intermolecdeadtibns than in a
“normal” mixture, a sign that the components are less attracted to each otheriguid
phase than to molecules of their own kind. These intermolecular itweiseare determined
by fadors such as dipole moment (polarity) and hydrogen bonding. Converselgha hi
boiling azeotrope has a boiling temperature higher than theittedr component, so it is
more difficult to get the molecules into the vapor phase. This reflextetivelyunusual
situation of components that have more favorable intermolecular inbemakith each
other in the liquid phase than with molecules of their own kind. Theegds of ideal
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mixtures of liquids (in Topic 5A) and deviations from ideal behavioi fpics 5B and 5E)
will further define the behavior of “normal” (ideal) mixtures.

Solutions to exercises

5C.1(b) Add the boiling point of A to the table &t =y, = 1 and the boiling point of B ak = yg =
0. Plot the boiling temperatures against liquid mole fractions and the saifireg b
temperatures against vapour mole fractions on the same plot.
The phase diagram is shown in Figuf2 b The phase boundary curves are polynomial fits
to the data points.

Figure 5C.1

a/°C

Mole fraction A

(i) Find xa = 0.50 on the lowerwve and draw a horizontal tie line to the upper curve. The
mole fraction at that point

(i) Find xo = 0.67 {.e., xg = 0.33) on the lower curve and draw a horizontal tie line to the
upper curve. The mole fraction at that poingis= 0.91(i.e., yg = 0.09).

5C.2(b) The phase diagram is shown in Figuta2 &
Figure 5C.2

+10

g/°C

i iSolid NH, + N,H, :
90 —
0 x (NH,) 1
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5C.3(b) Refer to the figure given with the exercise. At the lowest temperatuswn on the phase
diagram, there are two liquid phases, a watdr phase Xz = 0.07) and a methylpropanrol
rich phase Xz = 0.88); the latter phase is about 10 times as abundant as the former (lever
rule). On heating, the compositions of the two phases change, therisfatgrthase
increasing significantly in methylpropanol and the methylpraprich phase more
gradually increasing in water. (Note how the composition of tfieside of the diagram
changes more with temperature than the right.) The relative promonibthe phases
continue to be given by the lever rule. Just before thdeioimtersects the phase boundary,
the methylpropanelich phasexz = 0.84) is in equilibrium with a vanishingly small water
rich phase Xz = 0.3). Then the phases merge, and the siplgéese region is encountered
with xg = 0.3.

5C.4(b) The feature thahdicates incongruent melting (Topic 5C.4(c)) is circled in Fig@e35The
incongruent melting point is marked &s The composition of the eutecticxg~ and
its melting point is labeled; .

Figure 5C.3
“‘---\\ b a g
~ (T
o 1 b\
2 T
©
5 L IN\T
2 | s
| I | 1
0 0.2 0.4 0.6 0.8 1

Mole fraction of B, x,

5C.5(b) The cooling curves corresponding to the phase diagram in Figudéad are shown in
Figure 8C.4(b). Note the breaks (abrupt change in slope) at temperatures corregptndi
pointsa, by, andb,. Also note the eutectic haltsatandbs.

Figure 5C.4
LLA} [{:1}
____________ \
g
Z [
£ [ ——
i f
= | A
I
| T~ | .
sra LN
S e T \
o 033 06T 1
A Ay B

5C.6(b) Refer to Figure 6.5. Dotted horizontal lines have been drawn at the relevant temperatures.
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5C.7(b)

Figure 5C.5
500

b
<
=]
/

X1

r\/

0 0.2 0.4 0.6 0.8 1
Mole fraction of B, xg

L
=]
S
e
W
™

Temperature, 6/°C

(i) At 500°C the phase diagram shows a single liquid phasdl @bompositions, s@
lsolublein A in all proportion
(i) At 390°C, solid B exists in equilibrium with a liquid whose compositioairisled and
labeledx; on Figure 5.11. That compositiondg= x; =
(iii) At point x,, two phases coexist: lfh AB, and a liquid mixture of A and B with mole
fractionxg = x, = 0.41. Although the liquid does not contain any,ARits, we can think of
the liquid as a mixture of dissociated AB A. Call the amount (moles) of the compoumd
and that of free An,. Thus, the amount of A (regardless of whether free or in the
compound) is

Na =Ng+Ne,
and the amount of B is

Ng = 2n..
The mole fraction of B is
Ny 2n, 2n
Xg =% = = =

n,+n, (n+n)+2n  n +3n

Rearrange this relationship, collecting termsadon one side and, on the other:

NaXo = Ne(2-3%) .
The mole ratio of compound to free A is given by

n_ % 041 _ _

n, 2-3x  2-3x041

a

The phase diagram is shown in Figu@.® Point symbols are plotted at the given data
points. The lines are schematic at best.

18



Figure 5C.6

g/°C

1100 4
1050 -
Liquid
Liquid
+ solid
— hy /
750 Solid
700 . . . 1
0 02 0.4 0.6 0.8 1
x (ZreE,)

At 860°C, a solid solution wittx(ZrF;) = 0.27 appears. The solid solution continues to
form, and its Zri content increases until it reache&rF;) = 0.40 at 830°C. At that
temperature and below, the entire sample is solid.

5C.8(b) The phase diagram for this system (Figuta7 is very similar to that for the system
methyl ethyl ether and diborane of Exerda7(a). The regions of the diagram contain
analogous substances. The mixture in this Exercise has mmi#bmole fraction 00.80.
Follow this isopleth down to see that crystallization begins at about 1Z3&liquid in
equilibrium with the solid becomes progressively richer in diborangl the liquid
composition reaches 0.90 at 104 K. Below that temperature the systenixisire of solid
compound and solid diborane.

Figure 5C.7
140

5C.9(b)

90 +—F—F—

The cooling curves are sketched in Figue.& Note the breaks and halts. The breaks
correspond to changes in the rate of cooling due to the freezing out of eisiclidreleases
its heat of fusion and thus slows down the cooling process. The haltspoomdet the
existence of three phases and hence no variance until one of the phases disappear

Figure 5C.8
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5C.10(b) The phase diagram is sketched in Figuted%

Figure 5C.9
54

52 r

50

8/°C

4(} -

38 1 L Il L 1 1 1 | 1
01 02 03 04 05 06 07 08 09 10
RN

(i) Whenx, falls to 0.47, a second liquid phase appears. The amount of new plrassés
asx, falls and the amount of original phase decreases unti), at0.314, only one liquid
remains.

(ii) The mixture has a single liquid phase at all compositions.

Solutions to problems

5C.2  (a) The phase diagram is shown in Figuz 1.

Figure 5C.10
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5C.4

T/IK

310

305

300

205

200

0.0 0.2 04 0.6 0.8 1.0
X
(b) We need not interpolate data, for 296.0 K is a temperature for which wesekpgrimental
data. The mole fraction &, N-dimethylacetamide in the heptarieh phase (call the point,
at the left of the tie line) is 0.168 and in the acetamidke phase [, at right) 0.804. The
proportions of the two phases are in an inverse ratio of the distance tieifractions are
from the composition point in question, according to the lever rule. That is

n,/n,=1,/1, =(0.804-0.750)/ (0.750-0.168)=
The smooth curve through the data crosse$.750 a{302.5K]|, the temperature at which the
heptanerich phase will vanish.

Figure 8C.11 displays the phaamiagram.|A compoundwith probableformula A;B exist$ It
melts incongruently at 700C , undergoing the peritectic reaction

A_B(s)—>A(s)+(A+B, )
The proportions of A and B in the product are dependent upon the overall ciompasid the
temperature. A eutectic exists at 400andxg = 0.83.

Figure 5C.11

5C.6

4

1300
Liquid A& B

1100 4

o0 Liquid A& B

Solid A
Fli] - - - - -

Solid A Liquid A & B

Liquid A & B
(Snlid B )
S00 AT " 4
Solid A;B Solid A,B

- . . &

. Liquid A;B & Solid B

300 L 1 . [
)] 0.20 0.40 (.60 (.80 1.00

*m

The information has been used to construct the phase diagram in Rgji?éah In MgCuy
the mass percentage of Mg is
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(100)x — 223

24.3+127
and in MgCu it is

(100)x — 386 13

48.6+63.5
The initial point isa;, corresponding to a singfghase liquid system. A, (at 720°C) MgCu
begins to come out of solution and the liquid becomes richer in Mg, mémvarde,. At as
there is solid MgCu+ liquid of compositione, (33 percent by mass of Mg). This adlon
freezes without further change. The cooling curve will resemble gshatvn in Figure
5C.12(b).

Figure 5C.12

8/°C

5C.8

(a) (b)
1200 -
a
1 ?
800 - &ay
e AT
4 a :a3 _____
| €2
400 - : v
| £
II I I I
Cu MgCu; Mg Cu Mg Time

The data are plotted in Figure€33. At 360°C, KFeCl(s) appears. The solution becomes
richer in FeCJ until the temperature reaeh 351°C, at which point KFe{$) also appears.
Below 351°C the system is a mixture off€Cl(s) and KFeG(s).

Figure 5C.13

6/°C

5C.10

800

700 4N

L1qmd+K(‘1 .......................................

Kat R T KPeCli4FeCly
KoFeCly - [KFeCly + i 5
: 5 o |K,FeCl : : .
300 : i : 2ie 4 i : i :
0 x(FeCly) 1

Equation 5C.5 is
22



P\ Ps
Py +(Ps = Pa)Ya
First divide both sides byp; to express the pssure in units ofpf_\. Next, divide both

numerator and denominator tgg to see if the right hand side can be expressed as a function
of the ratio p; / p; rather than of each vapor pressure separately:

B 1

P e+ (- P )Y

The plot of p/ p; VS. Y, at several values of the vapor pressure ratio is shown in Figure 5C.4
of the main text.

p/p,

5C.12 Equation 5C.7 is

Xa

In

——&(1-2x,) - £2x, - )

The simplest way to construct a plotffs. x, is to isolates:
In_a_

I-x,

C
A plot based on this equation is shown in Figutel8(a).

Figure 5C.14(a)

7

64

0 v

a 0.2 04 6 (8 1

(a) The graphical method described in section 5C.3(b) and illustrated in dhre text's
Figure 5C.19 islao shown below in FigureGl14(b). Here the lethand side of eqn 5C.7 is
plotted as the bold curve, and the lighter lines are the-highdl side for£ = 1, 2, 3, and 5.
Small squares are placed where the curve intersects one of the lines. Note thavé¢he
intersectsevery line atx, = ¥, the composition at whidi® is maximized. For values df<

2, that is the only point of intersection; for valuesfof 2, there are two additional points of
intersection arranged at equal distance fram %.
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Figure 5C.14(b)

06 ng 1

The rootx, = % is unlike the other roots of eqn 5C.7 in several respects. The graphical
approach shows that it is a root for all valueg.oFhat fact can be confirmed by inspection by
substitutingk, = %2 into egn 5C.7, leading to 0 = 0 for any finite valu&.dfor £> 2, that root

of eqn 5C.7 is a maximum in the Gibbsergy, not a minimum, as can be seen in Figure
5C.18 of the main text. However, in the equation obtained by isolgting= ¥2 leads only to

&= 2. That equation yields an indeterminate formxor %2, but application of L'Hospital's

rule yields

XA

In 1 -1
jim 2% _ iy M5 INA=8) _jy 2 2C%)_2+2 )
=k 2% -1 ©h 2%, -1 =7 2 2
(b) One method of numerical solution is illustrated by the followdalis from a spreadsheet.
Set up one column to represent one for the lefhand side of eqn 5C.7, and one for the
right-hand side (with variable ). From the cells shown here, it is apparent that

Xa

>7(2x, —1) when xa =

mle <7(2x, ~1) whenx, = 0.9980 or 0.9985, buln-
A xA

0.9990. Therefore, the value »f when the two sides were equal lies somewhere between
0.9985 and 0.9990, or, to three decimakps, at 0.999. Therefore, a root of eqn 5C.7 when

= 7 isxa = 0.999.

X In(x/(1-x)) 7(2x-1)
0.998 6.213 6.972
0.9985 6.501 6.979
0.999 6.907 6.986

5D.2

5D.1(b)

5D Phase diagrams of ternary systems

Answers to discussion question

The lever rule [5C.6] apg@s in a ternary system, but with an important caveat. The tie lines
along which the rule applies are experimentally determined, not nebessaizontal lines

or lines parallel to any edge of the triangular diagram. Thus the lever riliesajpot as a
practical matter it can be used only in the vicinity of plotted tie lines. (Byrast, recall

that the lever rule in a binary phase diagram could be appiibih a twophase region
simply by drawing a horizontal line to the appropriate phase boundamesTjdpic 5D.2(a)

and Figure 5D.4 of the main text.

Solutions to exercises

The ordered triplesxf, xg, Xc) are plotted in Figure®.1. The vertices of the triangular
phase diagram are labeled for the component that is pure at that vertexafpte, the top
of the diagram is pure A: (1, 0, 0). As a reminder, at the edge oppoalieled vertex, that
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component’'s mole fraction is zero. For example, the base of the diagmmesents
compositions (0xg, Xc).

Figure 5D.1

5D.2(b)

Note that the compositions are given in mass percentages, not mole percestages
simply convert to moles before plotting. Assume a convenient sasig#, such as 100 g,
making the numerical values of the mass percentages equal to masses:in grams

1 mol =0.565 mol
4.9

(i) NaCl:

x _1mol. =0.1@ mol
322.21g

_Lmol =1.89 mol
18.016 g

To get mole fractions, divide these amounts by the total amount of 2155 mo
0.565 mol
2.55 mol
X (NaxSQ;-10H,0) = 0.040 x(H,0) = 0.74
This composition is point a in Figur®3.
(i) We want to plot a line representing equal masses of salt with vaagiognts of water.
One point on that line has no water. Compute the mole fractions thiaspond to the
amounts of salt computed in part (a) with no water. In that case, the totahiist
n,. = (0.565+0.1) mol=0.667 mol

so  x(Nach=2202 M0 o5 and  x(N&SOs10H,0) = 0.15
0.667 mol

Plot this point on the edge opposite the vertex label€dl fihe other extreme has the salts
in the same proportions, but in amounts negligible compared to that of eatide other
end of this line lies at the vertex labelegxH The line is labeled b on Figur®2, and note
that it goes through point (a) as it must.

Na,SO,- 10H,0: 33g

H,0: 34 gx

x(NaCl)=

Figure 5D.2
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H,O  Na,SO,10H,0

5D.3(b) First convert to moles arfind composition by mole fraction.
1 mol

H,O (W): 55.0 gx ———— =3.05 mol
0 W) 918016 g

CHCL, (C): 8.8 gx M _ 0074 mol
1194 g

CH,COOH (A): 3.7 g« =M _ 0062 mo
60.05 g

To get mole fractions, divide these amounts by the total amount of 3119 mo

3.05 mol
=——=0.958 x=0.023 Xa = 0.019
=319 mol ¢ A

This point is plotted in Figure®3; it is very close to the label W in the original Figure
5D.4 of the main texfOnephaskis present, since our point lies outside the phasedary
arc (to the left of it).
(i) If water isadded to our mixture, the composition changes from our point alongrhe ve
short line connecting it to the vertex labeled W. The system remains igla ghase.
(i) If acetic acid is added to our mixture, the composition changes from mtrgtang he
line connecting it to the vertex labeled A. The system remains in a sirage.ph

Figure 5D.3

7 Xﬂ\’ XCH 4CO0H

0.4

\ ".-' \
W \0.2

]

! . 0 CHCl,
0 02 04 06 08 1

xL"xCHC|3

5D.4(b) The phase diagram showing the four given compositions is shown in FIQute 5
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Figure 5D.4

s \g {N HJZSO,‘

NH,CI / -
0 02 04 06 08 1

practically in asinglephaseregion; that is, it is on the border between a shpifiase and a
two-phase region, so there would be a vanishingly small amount of a sdwas® gesent.
Finally, point (d), for which allhree components are present in nearly equal amounts, is in
althreephaseregion (although very near the border with a tpiase region).

5D.5(b) (i) Note the line in FigureB. 5 that runs from the wateMH,Cl edge near(NH,CI) = 0.2
(the point that re@sents a saturated aqueous solution of@Ho the (NH),SO, vertex.
Traveling along that line from the edge to the vertex represents adding,$@to a
saturated aqueous solution of j@{l Note that it traverses the singlbase region at first.
Thatis, the added (NE,SO, dissolves and does not cause J8Hto precipitate out. If one
starts with saturated aqueous J@Hwith solid NH,Cl in excess, then the starting point is a
bit further down on the watéMH,Cl edge, for example at(NH,Cl) = 0.3. Addng
(NH,),SO, to such a solution would take one from that point to the jJp8@, vertex.
Initially, the system remains in the typdhase region, but eventually a singlease region is
reached. Note that the line intersects the sipbkese region at a highNH,Cl-water ratio
and even a higher overaNH,CI) than that of saturated aqueous /8H (That is, there is
not only more NHCI relative to water at that intersection point, but /8His a larger
fraction of the saturatethree-component solution thait was in the saturatetivo-
component system of water and ) So here too, the effect of adding (N4$0O, is to
make additional NECI dissolve, at least at first.

Figure 5D.5

Point (a) is region and point (b) ira [threephaseregion. Point (c) is
single phas

NH,CI £ ; / Ny
0 0.2 0.4 0.6 0.8

7N ]0 tNHq}st&

(ii) First convert to moles for a convenient sample size, such as 40d §nd composition
by mole fraction.

NH.CI: 25 gx =19 _ 6 467 mol
53.49 ¢

(NH,),S0;; 75 gx —M _ 6 568 mol
132.15¢

To get mole fractions, divide these amounts by the total amount of 1103 mo

0.467 mol
X(NH,Cl)=——=0.45 X((NH4),S0O,) = 0.55
(NH.Ch == ((NH,);SQ)
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5D.2

So the system’s starting point is on the baseline of the trianglethangath it traverses
joins the initial point on the baseline to the(Hvertex. As soon as water is introduced, a
third (saturated aqueous) phase is formed in equilibrium with old phases. As ore
water is added, one of the solid phases disappears, and the two remaésieg qimnsist of

a saturated agueous phase and a solid rich in)(8&,. Eventually, as still more water is
added, that solid phase also disappears, leaving a single aquasesag(tH,O) > 0.63.

Solutions to problem

(i) The phase diagram is shown in FiguEz&

Figure 5D.6

5E.2

DEC

A

CO? i Nitroethane (N)

(i) Lines from the baseline (the G@itroethane edge) to the DEC vertex represent
compositions obtained by adding DEC to a.@@roethane miture. Such lines that avoid
two-phase regions represent compositions of @l nitroethane to which addition of DEC
can cause no phase separation. The range of sughitt@thane compositions can be found
by drawing lines from the DEC vertex to the d&lage tangent to the twephase arcs. On
Figure 5.26, the dashed lines are tangent to the twephase regions, and they intersect the
baseline ax = 0.2 andx = 0.4 (wherex is mole fraction of nitroethane). So binary £O
nitroethane compositions betwettrese would show no phase separation if DEC is added to
them in any amount. (Keep in mind, though, that the phase boundariesréaietched, not
plotted, so the tangent lines are only approximate.)

5E Activiti es

Answers to discussion question

Raoult’s law [5A.21] assumes that the vapor pressure of a solvent itosofar of a liquid
in a mixture of liquids) is simply its pusubstance vapor pressure multiplied by its mole
fraction in the mixture. That is, it assumes that the intermoleculnatttons that produce
equilibrium between pure liquid and vapor are unchanged exceptddiatt that only a
fraction of the molecules in the liquid are molecules of the spafiénterest. In effect,
Raoult’s law predicts vapor pressure based on-pguéd vapor pressure and composition
(mole fraction):

Pa = Pa*Xa
For real solutions, on the other hand, we modify Raoult’s law toisaffect, whatever the
vapor pressureeally is, let us use that to define an “effective” mole fraction. Raoult’s law
implies

Pa
T =X
P,

We modify this relationship to define activity:
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Pr_a, [5E.2)

A

Solutions to exercises

5E.1(b) Let A =water and B = solute.
_ b 0.02239 atm
a, = 5E.2]=————=0.970
" ops [ ] 0.02308 atm -
a n
7, = —[5E.4] andx, = —*
XA nA+ nB
=208 __511mol n =——229 0506 mo
18.02 g mot* 241 g mol
51.1 0.9701
So X,=——=0990 and y,=—+-—= -0.98
* = 51.1+ 0.506 7a=70.990 l0.08d
5E.2(b) From egn 1A.8 (partial pressures) apdve can compute the partial pressures:
y=—ra P o314
p, +p, 101.3kPa
So pa=101.3 kPx 0.314 = 31.8 kPa
and pg=101.3 kP& 31.8 kPa =69.5 kPa
_bs _31.8 kPa P, _69.5kPa .
a, = 5E.2]=———=(0.436 and =—= =10.75
" ps [ ] 73.0 kPa - % p, 92.1kPa -
a, 0.436 a, 0.755
=2 [5E4]=——=]1.98 and =B
7x =%, PEAE G220 194 e =%, ~0.780
5E.3(b) The biological standard state is defined as pH 7, which immikgs: 107. All other
activities in the biological standard state are unity, just as in the chemitdhistsstate; in
the dhemical standard state,, =1=10" as well (which implies pH 0). As a result, the
biological standard molar Gibbs function fof i4 lower than that of the chemical standard
by 7 RTIn 10 [5E.16], which is equal to 39.96 kJ mat 25°C Prief illustration 5E.3.
For the given reaction, the standard Gibbs energy is
AG® = A,G°(B)+4A, G°(H")-2A, G°(A)
The biological standard is
AG® = A, G®(B)+4A, G*(H")-2A, G°(A)
=A,G®(B)+4{A, G®(H")~-39.96 kJ mol } - 2A, G°(A)
Comparing the two, we have
AG® ~AG® =-4%39.96 kJ mol™ = |-159.84 kJ mol |
5E.4(p) The partial pressures of thocomponents are given by eqn 5E.19
P, = pSXJegy(LXJ)
The total pressure is the sum of the two partial pressiitesvapoipressure diagram is
plotted in Figure k.1
Figure 5E.1
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5E.2

5E.4

PkPa

Comment. The figure shows that upon adding the other compbrto either pure
component, the vapor pressure falls (as is evident from the fact that therexalre

decreases as one moves from either edge of the graph). This is constbtéime whysical

interpretation given in Topic 5E.3: negatigeorrespods to exothermic mixing, reflecting
favorable interactions between the components.

Solutions to problems

X Ina
=-—*lna =-——2 (@)
X r
Thereforedg = ~Ldina, + Linaadr
r A r.2 A
1
and dina, :?In a,dr—rdg. (b)

Now the GibbsDuhem equabn [5A.12a], implies

XAd,uA + XBd/,lB =0.

Sinceu= 4 +RTIna,

XadInay,+xgdIlnag=0.
dInaA_

ThereforedIna, = —?(—Ad Ina, = — = —r%ln a, dr+dg [from (b)]

B

_ ?dr +dd [from (a)]=¢ dInr +dg

Subtract d Ir from both sides, to obtain

d|n%=(¢—1)d|nr+d¢=@dr+d¢.

Integrate both sides of the equality from pAréwvherer = 0) to an arbitrary composition:

jdln%:j@dujdgﬁ

The lower limit of the lefthand integral is:

lim In {%} ~ lim In (VBTXBJ = limIn(y,x,) = In1=0,

r—0 r—0

leaving the desired expression

In2e - ¢-¢(0)+[r(¢—‘1j dr

r 0 r

The partial pressure compared to itsgpsubstance value, accordingetin 5E.19is

© E(1-x, )
pA / pA - XAe :

For smallx,, this becomes approximately [SE.20]

P/ Py~ X, E
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Certainly one would not expect this expression to hold over the entire rhngmpositions.
In fact, the two equations differ pretty quickly, particularly for relativlarge values of.
These two equations are plotted agaxash Figure E.2.

Figure 5E.2

5F.2

5F.1(b)

09

1] ool 002 003 004 005 006 007 e

At x5 >[0.019 eqgn 5E.20 exceeds 5E.19 by more than 10 per cent.

5F The activities of ions

Answers to discussion question

The DebyeHiickel theory of electrolyte solutions formulates deviations from idefsh\ior
(essentially, deviations due to electrostatic interactions) in terms ofottkeofvcharging the
ions. The assumption is thatettsolute particles would behave ideally if they were not
charged, and the difference in chemical potential between real and ideal behaviotsamou
to the work of putting electrical charges onto the ions. (Recall [Topit(8f.that the
Gibbs function is ssociated with maximum nesxpansion work.) To find the work of
charging, the distribution of ions must be found, and that is done usinghitides
Coulomb potential [5F.15], which takes into account the ionic strengtheo$olution and

the dielectricconstant of the solvent. Details of the derivation are found in Topic 5F.2
(particularly in theJustification$. The DebyeHUckel limiting law [5F.19b] (valid only for
dilute solutions because of some truncated series expangigas)a mean ionic actiyit
coefficient that depends on the charges of the ions involved, the ionigthktrehthe
solution, and on a constant [5F.20] that takes into account solventriEspand
temperature.

Solutions to exercises

The definition of ionic strength is
1wl b)
I == | — |2 [5F.9
227 )% 57

and ifb is the molal concentration of an X, salt, the molal concentrations of the ions are
by=pxb and by=qgxb.

1 (b))
Hence | =§(pzf+qu)kb_6)

1 (b)) [ b)
For Kg[Fe(CN)] | ==Bx 1 +1xF)| — | =6| —
a[Fe(CN)] 2( x x )LbeJ 7

For KCl and NaBr (ad any other compound of monovalent ions)
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5F.2(b)

5F.3(b)

5F.4(b)

1 (b)) (b)
I :E(lx 1+1x 1)Lb—eJ :Lb—ej
Thus, for this mixture
| = I (K,[Fe(CN).]) + 1 (KCI) + I (NaBr)
_ 6( b(K ,[Fe(CN).]) ) , DKCD) | b(NaBr)
b® b® b®
— (6) x (0.040)+ (0.030)+ (0.050)=

Comment. Note that the strength of a solution of more than one electrolyte may b
calculated by summing the ionic strengths of ealdctrolyte considered as a separate

(b))
solution, as in the solution to this exercise, by summinq)tbduct%kb_{;) le for each

individual ion as in the definition df[5F.9].
Question. Can you establish that the comment holds for thiscése? Note that the term
for K™ in a sum over ions includes ions from two different salts.

The original KNQ solution has an ionic strength of 0.110. (For compounds of monovalent
ions, the ionic strength is numerically equal to the molal coram@mt; as shown in
Exercise 5F.1(b).) Therefore, the ionic strengths of the added smts:0.890.
(i) The salt to be added is monovalent, so an additional 0.890 gt be dissolved.
The mass that must be added is therefore

(0.500 kg)x (0.890mol kg) x (101.11 g mof) = .

) 1 oy o (b)) e D)
(i) For Ba(NQ), I =§(1x2 +2x1 )Lb_e) [SF'Q]_3Lb_eJ

Therefore, the solution should be made 0.890 mdi&g 0.297 mol kgt in Ba(NQ,),. The
mass that should be added to 500 g of the solution is therefore
(0.500 kg)x (0.297 mol kg*) x (261.32 g mof) = :

The solution is dilute, so use the Debiéickel limiting law.
log . = —fz.z| AI*?[5F.8]

| = %Z(b%} Z[5F.9]= %{(o.ozox 1%) + (0.020x 12) + (0.035x 22) + (2 x 0.035x 1)}

=0.125
For NacCl:
log 7 = —1x1x0.50%(0.125}?= -0.180  so % =[0.66.
The activitieof the ions are
a(Na") = a(CI") = :b/b® = 0.66x 0.020 =0.013
Question What are the activity coefficients and activities of CagMOn the same
solution?
The extended Debyellckel law [5F.11a] is
ody - Alzz |IY?
ST
Solving forB.
B__(i+A|z+zf N1 +0.509\
Ll”z logy, ) L(b/bﬁ)”2 |097J
Draw up the following table

b/(molkg’)  5.0x10° 10.0<10° 50.0<10°
Y 0.927 0.902 0.816

B 1.32 1.36 1.29

The values oB are reasonably constant, illustrating that the extended law fits doisity
coefficients withB =|1.3.
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Solutions to problem

5F.2  Specialized to 1,1 electrolytes, the Davies equation @ith0 and DebydHlickel limiting law

5.2

are, respectively
I 2

A
lo =———[5F.11b and
97 =g | ]

1/2
logy, =—-0.509"? [5F.8F — 050&%} [5F.¢

Figure 5.1(a) shows a plot of log. vs.1*for both equations.

Figure 5[|1:.1(a)

002 1

004 ¢

006 1

008 ¢
Davies

log .

0.1 4

012 1 i
Debyd-Hiickel

114 1
.16 1
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0 0.05 .1 0.15 02 025 0.3 033

nz
It is clear that the values plotted differ by about 50% at the right side of the;flzuwvever,
note that the values plotted are lagand noty. Figure %.1(b) shows a plot of. vs. |2 for
both equatins. Toward the right side of this graph, one can see that the valued gdititte
by about 10%. To be exact, fbk the limiting law predicts activity coefficients within
10% of those predicted by the extended law.

Figure 5F.1(b)
1

095 1

08 4

085 |
Davies
=08 T
0.75 1 .
Debye-Hiickel
0.7 1
065 1
06 | | | |
] 005 [IN} 0.15 0.2 025 0.3 0.3s

ne

Integrated activities

The data are plotted in Figui®.1. The dotted lines correspond to Henry’'s law vapour
pressures and the dashed lines to Raoult’s law; the solid curvesergpies experimental
data.

Figure 15.1
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On a Raoult’s law basisazﬁ* [5E.2] anda = yx [BE.4], so y :i*. On a Henry's law
p Xp

basis, a:E [5E.10], so y :&. The vapour pressures of the pure components are not
given in the table of data, so we extrapolate the experimental data toRtaii.3 kPa and

p's = 35.6 kPa. The Henry’s law constant for benzene is determined by eatiagohe low

B data toxgz = 1, i.e,, to xa, = 0. (The Henry's law constant for acetic acid can also be
determined by extrapating the lowA data tox, = 1) The values obtained akg = 68.1 kPa
andK, = 30.3 kPa. Then draw up the following table based on the partial presguen in

the data.

Xa 0.016] 0.0439| 0.0835| 0.1138] 0.1714

pa/kPa| 0.484| 0.967 | 1.535 | 1.89 2.45

pa/kPa| 35.05| 34.29 | 33.28 | 32.64 | 30.9

as(R) | 0.066] 0.132 | 0.210 | 0.259 | 0.336 pa/p a]

ag(R) | 0.985] 0.963 | 0.935 | 0.917 | 0.868 pe/p g

W(R) | 4.144| 3.017 | 2518 | 2.275 | 1.958 Pa/Xap Al

#(R) | 1.001] 1.007 | 1.020 | 1.035 | 1.048 pg/Xep ]

ag(H) | 0.515] 0.504 | 0.489 | 0.479 | 0.454 pg/Kg]

w(H) | 0.523] 0.527 | 0.533 | 0.541 | 0.548 pg/xgKg]

Xa 0.2973] 0.3696| 0.5834| 0.6604| 0.8437| 0.9931

pa/kPa| 3.31 3.83 4.84 5.36 6.76 7.29

pa/kPa| 28.16 | 26.08 | 20.42 | 18.01 | 10 0.47

ar(R) | 0.453 | 0.525 | 0.663 | 0.734 | 0.926 | 0.999

as(R) | 0.791 | 0.733 | 0.574 | 0.506 | 0.281 | 0.013

m(R) | 1.525 | 1.420 | 1.136 | 1.112 | 1.098 | 1.006

w(R) | 1.126 | 1.162 | 1.377 | 1.490 | 1.797 | 1.913

ag(H) | 0.414 | 0.383 | 0.300 | 0.264 | 0.147 | 0.007

w(H) | 0.588 | 0.607 | 0.720 | 0.779 | 0.939 | 1.000

GFis defined [5B.5] as
GF=A_G-A_ G"'=nRTX, Ina, +x,Ina,)—nRT(x, Inx, +X,Inx,)
and witha = yx

GE=nRTXa In 74 + x5 In 38) .
Forn =1, we can draw up the following table from the information above and
RT=8.3145 J mol K™ x 323 K = 2.6%10° J mor™ = 2.69 kJ mot.

Xa 0.016 | 0.0439| 0.0835| 0.1138| 0.1714

Xa IN 0.023 | 0.0485| 0.077 | 0.094 | 0.115

% In 7(R) | 0.001 | 0.0071] 0.018 | 0.030 | 0.038
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| GF/kJ mol” | 0.0626] 0.1492] 0.256 | 0.332 | 0.413 |

Xa 0.2973| 0.3696| 0.5834| 0.6604| 0.8437| 0.9931
Xa IN ya 0.125 | 0.129 | 0.075 | 0.070 | 0.079 | 0.006
%o IN 7(R) 0.083 | 0.095 | 0.133 | 0.135 | 0.092 | 0.004
GF/kJmoi’ | 0.560 | 0.602 | 0.558 | 0.551 | 0.457 | 0.027
Question In this problem both A and B were treated as solvents, but only B dsita. so
Extend the table by including a row fgy(H).

5.4 Pa=aa Pa [5E.2] =yaXaPa” [5E.4]
SO Vo= i* = L?
XA pA XA pA
Sample calculation at &

1(0,)— 0.11x 1OOkPaX( 760Torraj:l079
0.34x 225Torr \101325kP
Summary
TIK |773]78 80 82 84 86 88 90.2
A0, | — [0.877]1.079]1.039] 0.995] 0.993] 0.990 | 0.987

To within the experimental uncertainties the solution appears to bé (jde 1). The low
value at 7& may be caused by nonideality; however, the larger relative uncertaip@in
is probably the origin of the low value.

A temperaturecomposition diagram is shown in Figurg.2(a). The near ideality of this
solution is, however, best shown in the presstomposition diagram of Gurel5.2(b). The
liquid line is essentially a straight line as predicted for an ideal solution.

Figure 15.2(a)
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Figure 15.2(b)
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5.6

piTorr

l1|lrl|l_l.l.L.I.IIII.I.II.|.llII:|lII.I 1

0 20) 40 6l 80 100
x(05) or w(04)

The GibbsDuhem equation applies to any partial molar quantity, so we start, EB&imple
5A.2, with
Na dVA +Ng dVB =0
n
Hence dv,=--—*%
nB
Therefore, by integration,

A

Vg (X4, XB) _ Va (X4 %g) nA Va (X4 %g) r\XAdVA
V ( A B) V (0 1) .[V __J‘ n J‘VA(O,l) n(l_ XA)

©D
The notationVs” means the molar volume of pure B, which is the same as the partial molar
volume of B wherxg = 1. Therefore,

J~V A 0 %) Xy dV

Vv, (0,1) n, A

V. (X, ,X
B(A B v, (0.0)

We must now plotxa/(1 — Xa) agalnst\/A and estimate the integral. That means we must first
find the partial molar volumes of chlorofornv,) that corresponds to various chloroform
mole fractionsX,). At constant temperature and pressure,

\Y/ .

V, = (ﬂ] [5A.1] = [a(n m)j wheren = n, + ng is the total number of moles.
o, ) o(nx) ),

Thus, V, is the tangent line to the curve of a plot\ofs. n, for a constant value afz. For

convenience, letg = 1 mol. Then we can draw up a tablevoh, andn, values using th¥,,,

X datagiven and the relationship

x,=no T
" n n,+1mol
X
Solving forn, yields n, = Ax x 1 mol
A
Xa 0 0.194| 0.385| 0.559| 0.788| 0.889]| 1
Vm/(cm3mol’l) 73.99| 75.29| 76.5 | 77.55| 79.08| 79.82| 80.67
na/mol 0 0.241| 0.626| 1.268| 3.717| 8.009
n/mol 1 1.241 | 1.626| 2.268| 4.717| 9.009
vienr 73.99| 93.41| 124.4| 175.9| 373.0| 719.1

Figure 15.3(a)
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5.8

Viem®

800
TOO oo
600
SO0 i ......................................................
o V=8054a,+ 7391 : : : :
400 4 ........... .......... .......... ........... ............ ...........
300 o
: : : = 0.0252H1+ 80.34n, + 74.03
200 o S S ST S O ST A
0 T T T T i i i i
0 1 2 3 4 h] i} T 8 9

na/mol (ng = 1 mol)
In Figurel5.3(a), we plotv againstn,. Both linear and quadratic fits to the data are shown.
The data fit a straight line quite well; however, the slope of a straightdinonstant, which
would imply V, is constant (at 80.54 érmol™) over this range of compositions. We require
some variation i'V,, so we use the quadratic fit,
Vien? = 0.02520,/mol)? + 80.34a4/mol) + 74.03 ,
which leads to

(ﬂ} ={2 x 0.0252¢, / mol)+80.34} cn? mol™*

V =

A kanA )
Finally, we can draw up the table, includixg= 0.500
XA 0 0.194| 0.385| 0.500| 0.559| 0.788| 0.889
Va/(cm® mol™) | 80.34] 80.35] 80.37| 80.39| 80.40| 80.53| 80.74
For the present purpose we integrate ugA@®.5,0.5) = 84.39 cfmol™.

B

Figure 15.3(b)

1.4
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0 1' T T T T T T

80.33 80.34 B80.35 R0.36 8037 8038 8039 80.40 8041
Vo /(em®fmol™)

The points are plotted in Figuts.3(b), and the area required is 0.025 aml™. Hence,

V(0.5,0.5) = 73.99 cfmol™ —0.025 cm mol™ =[73.96cn? mol .

Comment. The integral derived at the start of this problem is most usefuofmputing the
partial molar quantity of one component given that of the other. In thes tiae data given
were overall molar volumes, from which we had to compitéefore we could apply the
integral to comput®/. In such a case, it would have beenexa® compute/g directly in the
same way we computédh.

In this case it is convenient to rewrite the Henry’s law expression as
mass of N = Py, X mass of HO x KN2
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(1) Atp, =0.78x4.0 atm = 3.1 atr

mass of N =3.1 atmx100 g HO x0.18ug N, /(g H,O atm) =| 56ug N,

(2) Atp, = 0.78 atm, mass of N=|14 ug N,

(3) In fatty tissue the increase iy Bboncentration from 1 atm to 4 atm is

4x (56-14)ug N, =(1.7x10° ug N,

5.10 (a) The sum has just one term, so
v  NK 4.0x10" dm® mol™ B 40 dn? gmol™
Al 1+K[A]_, 1+(1.0x10° dm® mol*)[A] . 1+ (10 dn? umol™)[A]
The plot is shown in Figurb 4(a).

out out out out

Figure 15.4(a)
40.0

00 L1 | | 1 1 | I | I 11 | | |
0.0 0.2 0.4 0.6 0.8 1.0

[Al/(dm® pmol™)
(b) There are two terms in the sumare

v 4x(1x10° dm’ mol™) . 2x(2x10° dm® mol™)
[Al,, 1+(1x10 dm’ mol*)x[A] , 1+(2x10° dm® mol*)x[A]
0.4 dnt gmol™ 4 dn? ymol™

= +
1+(0.1dm' gmol™) x[A] ,  1+(2 dn? umol™) x[A]
The plot is shown in Figun®.4(b).

Figure 15.4(b)
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5.12 Kevlar is a polyaromatic amide. Phenyl groups provide aromaticity and rerpléagid
structure. The amide group is expected to be like the peptide bond that camextsacid
residues within protein molecules. This group is also planar becasseanece produces
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partial double bond character between the carbon and nitrogen atoms. sTaegehistantial
energy barrier preventing free rotation about the CN bdhd. two bulky phenyl groups on
the ends of an amide group are trans because steric hinderancetimakissconformation
unfavourable. See Figutg.5(a).

Figure 15.5(a)

d
N—C <« N=C
H/ j RN resonance H/ r" }
trans = trans =
+ energy
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The flatness of the Kevlar polymeric molecule makes it possible to prdeesaterial so that
many molecules with parallel alignment form highly ordered, um¢angrystal bundles. The
alignment makes possible both considerable van der Waals attractions beidyaeent
molecules and for strong hydrogen bonding between the polar grodes on adjacent
molecules. These bonding forces create the high thermal stability arfchmed strength
observed in Kevlar. See Figu5(b).

.__D

Figure 15.5(b)
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H/ (} polar, covalent bonds

Kevlar is able to absorb great quantities of energy, such as the kinetgy ef a speding
bullet, through hydrogen bond breakage and the transition to the cis catdorma
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