4541.554 Introduction to CAD
 Oct. 24, 2007

Midterm Examination

4541.554 Introduction to CAD
Oct. 24, 2007
Name:_____Solution________

- This is an open book examination.

- You may write your answers in English, Korean, or both.

1. Strict partial order is a relation that is (1) irreflexive, (2) asymmetric, and (3) transitive. Show that (2) is redundant, i.e. (2) can be derived from (1) and (3). [10 points]

2. Briefly (no more than 100 words) explain why the concept of NP-hardness is important in developing algorithms that solve computer-aided design problems. [10 points]

3. Consider an IC layout which has many components already placed on it, but still has n empty slots remaining. Our problem is to place m (m(n) additional components in the n slots such that the interconnect cost (total interconnect length) is minimized.
(1) We ignore the cost for interconnects among the m additional components, but consider only interconnects between components to be place and components that have already been placed. For each component to be placed, the interconnect cost depends on which slot is used for the placement and it is known a priori. Explain how you can model and solve the problem. [10 points]

(2) Now we also consider the cost of interconnects among the components to be placed. If we place two components in two different slots, then the interconnect cost will be the distance between the two slots multiplied by the number of interconnect lines between the two components. What is the complexity of this extended problem? You can just give a guess and explain how you derive your guess. [10 points]

(3) Give a rough sketch of your algorithm to solve the extended problem in (2). The algorithm (heuristic algorithm is ok) should be efficient (should generate a relatively good result at short run-time). [10 points]

4. In the left edge algorithm, what will be the complexity of the algorithm if we implement the priority queue with a linear linked list instead of heap data structure? [10 points]

5. Briefly (no more than 100 words) discuss the computational complexity of linear programming (LP) problem, Simplex algorithm, and integer linear programming (ILP) problem. [10 points]

6. Show, in convex programming problem, that the domain of feasible points given by

[image: image1.wmf]linear

:

concave

:

(3)

(2)

,...,

1

,

0

)

(

(1)

,...,

1

,

0

)

(

j

i

n

j

i

h

g

R

x

p

j

x

h

m

i

x

g

Î

=

=

=

³

is a convex set. We have shown in the class that {x: gi(x)(0} is a convex set. So you don't need to show it again. [10 points]

7. Transform the graph (vertex) coloring problem to ILP (Integer Linear Programming) problem. Use the following variables for ILP problem formulation.

[image: image2.wmf]î

í

ì

-

=

î

í

ì

-

=

otherwise

0,

ex

color vert

 to

used

is

color

th

if

1,

otherwise

0,

used

is

color

th

if

1,

j

ij

i

v

i

x

i

c

Hint: you need to include the following constraints:
- If there is at least one vertex colored with i-th color, then ci=1.
- One and only one color should be used for each vertex.
- Two adjacent vertices will get different colors.
[20 points]

/ 100

(1) xRx is not true

(2) If xRy is true then yRx is not true

(3) If xRy and yRz are true then xRz is also true

Assume xRy is true and yRx is also true.

Then by (3) xRx is true, which is contradictory with (1).

Adding a new track takes constant time since we can just add a new element to the head of the linked list.

However, searching the list for an element that has minimum coordinate of rightmost edge take O(d), where d is the density of the set of intervals.

So the complexity is O(nd), where n is the number of intervals.

hj(x)=0 can be represented by hj(x)>=0 and -hj(x)>=0.

Since linear function is a special case of concave function, the two inequalities are considered to have the same form as gi(x)>=0.

So the set of all x's that satisfy (2) is also a convex set.

It is clear that (3) also defines a convex set (convex combination of any two points also belongs to the same set).

The domain of feasible points is a set of x's that satisfy all the given constraints, i.e. the domain is an intersection of all the convex sets defined by each of the constraints.

Therefore the domain is also a convex set.

Minimize  ci

subject to:

ci>=xij, for all i,j

i xij=1, for all j

xij+xik<=1, for all i and j, k such that ejk=1

ci>=0 for all i

ci<=1 for all i (not necessary)

xij>=0 for all i,j

xij<=1 for all i,j (not necessary)

Linear programming problem is not an intractable problem since it can be solved by a polynomial-time algorithm such as the Karmarkar's algorithm.

Simplex algorithm can also solve ILP problems.

Mostly it runs fast but in the worst case, it has exponential complexity.

ILP is known to be NP-complete and so has very high computational complexity.

One heuristic algorithm can be a greedy one which places the components one by one.

1. For this, compute the cost for each component (to be placed) and for all remaining slots. (this is assumed to be known a priori)

2. Then, for each component, compute the cost difference between best slot and worst slot. O(nm)

3. Then we take a component that gives largest cost difference, place it, and update the cost. O(nm)

4. Repeat 2 and 3 until we place all the components. O(nm)*O(m)=O(nm2)

Any other reasonable heuristic will be fine.

Model it as a bipartite graph (model the n slots as a set of vertices and the m components as the other set of vertices). The interconnect cost will be the edge weight. We create n-m additional vertices with 0-weight edges incident to those vertices. Then solve the minimum weighted matching problem.

There are P(n,m)=n!/(n-m)! different cases to place m components into n slots.

So we can guess that the complexity will be O(n!/(n-m)!), which makes the problem intractable.

Many CAD problems are known to be NP-hard, that is, they are not likely to have any polynomial time algorithm for optimum solution. For such problems, we do not need to waste time trying to device such an algorithm. Instead, we can try to develop a heuristic algorithm that finds a sub-optimal solution.

PAGE
2

_1254641343.unknown

_1254636647.unknown

