Partitioning Algorithms

Implementation and Comparison
4541-554 Introduction to CAD

Term Project Assignment

Nov. 12, 2007
1. Outline
In this project, you implement and compare several bi-partitioning algorithms we have covered in our class. The purpose of the partitioning is to minimize the number of interconnections between two circuit partitions (the number of nets cut by the partitioning), while maintaining the balance in size between the two partitions.
2. Details
There are many heuristic approaches proposed to solve the partitioning problem, which include Kernighan-Lin algorithm (KL), Fiduccia-Mattheyses algorithm (FM), and simulated annealing (SA). The minimum requirement of this term project is to write and compare two programs: one for FM and the other for SA. The SA should have the same cost and constraint as the FM. Set the size ratio (r) of a partition to 0.5 and the tolerance to (0.1(Cj=1s(j) (i.e. 10% of the total size). If you want to get extra credit points, then you may write and compare two more programs: one for KL and the other for SA. In this case the SA should have the same cost and constraint as the KL. Once you implement an SA program, it will be easy to implement another version. But you should carefully tune each program (e.g. cooling schedule or the number of moves generated at each temperature). Another way of getting extra credit is to improve the FM and SA. For example, you may try starting the partitioning with larger tolerance (say 25%) and then penalize the size imbalance in the later phase so that you can eventually obtain a legal partitioning.
The MCNC benchmark circuits are provided for your experiments. The circuit description is in a special format but you don’t need to understand the format since a parser will also be provided and you only need to understand the data structure that the parser generates. The program should be able to partition each benchmark circuit and obtain the number of nets cut by the partitioning and the execution time. The initial partitioning may be done randomly or with a constructive method. In the case of random initial partitioning, the experiment should be done about 10 times, since the result depends on the initial partitioning. You may try both random partitioning and constructive method partitioning and compare the results. Examine the relationship between the execution time and the complexity of the circuit (number of cells for KL types and number of pins for FM types) and draw it as a graph. Compare the results of FM (and KL) with SA in terms of number of cuts (note that KL and FM count the cuts differently) and execution time. Describe the experimental environment including the computer platform, the programming language, and so on.
The report should be written in the form of general two column conference paper with font size of 10pt for the main text and should not exceed 6 pages. You should not include source code. However, important code blocks may be included in the main text as pseudo-code with explanation. The report should contain introduction, previous work, implementation, experimental results, conclusions, and references.
3. Experimental environment
Platform: Workstation or PC

Language: C or C++

4. Team organization
One or two students
5. Deadline
Dec. 14, Fri.

6. Reference
Ching-Wei Yeh, Chung-Kuan Cheng, and Ting-Ting Y. Lin, "Optimization by Iterative Improvement: An Experimental Evaluation on Two-Way Partitioning," IEEE Tran. CAD, vol. 14, February, 1995, pp. 145-153.

7. Q & A
 Use the class board.
 TA: Jun-hee Yoo, 880-1787, ihavnoid@poppy.snu.ac.kr
Parser Manual

1. The place where the program and benchmark circuit is
Download part.tar in the class web board.

$ tar xvf part.tar

Type as above, and then the src directory and test directory is created in the current directory. Source code of the parser program is in the src directory, and the MCNC benchmark circuits are in the test directory.

2. How to compile
$ cd src

$ make

Type as above and a file named ‘part’ will be created inside the ‘test’ directory and the ‘src’ directory.

3. Data Structure

The whole circuit is structured like a hyper-graph with c cells connected by n nets as shown below.

The data structure is defined in standard.h. In this file, there are many data structures defined. Two important data structures are the CELL structure and the NET structure. The cellArray and netArray are declared as an array, whose sizes are determined by the variables named cellNum and netNum, respectively.
typedef struct celltype{

 int id;

 char name[MAXNAMELEN];

 int width, height;

 short netcount2;

 short *net2;

......

} CELL;

typedef struct nettype{

 char name[MAXNAMELEN];

 short cellcount2;

 short *cell2;

......

} NET;

extern int cellNum, netNum;

extern CELL *cellArray;

extern NET *netArray;

In the CELL structure, id represents the unique ID of each CELL and is identical with the index of cellArray. That is, cellArray[10].id is 10. The second element ‘name’ stores the name of CELL as a string. This variable stores the name of circuit which is given as input. Width and height are variables which store size of width and height of CELL and are used to obtain the size of CELL. Net2 and netcount2 are variables which store information of NET connected with CELL. Net2 is an array of short int type and netcount2 is a variable that has the array size. The value stored in array net2 is the index of NET connected with CELL. Namely, if value of cellArray[10].net2[0] is 1, it means that the first NET connected with CELL is netArray[1]. Detailed explanations of other variables are omitted here because they aren’t used in circuit partitioning
In the NET structure, ‘name’ is a string that stores the name of NET and stores the name of the circuit. The variables, Cell2 and cellcount2 stores information of the CELL connected with the NET. Cell2 is an array of short int type and cellcount2 is a variable that stores the size of this array. The value stored in array cell2 is the index of CELL connected with the NET. That is, if netArray[10].cell2[0] is 1, it means that the first CELL connected with the NET is cellArray[1].
The following code iterates on all cells that are connected to a single cell.

NET *netptr;

CELL *cellptr, *cellptr2;

int I, j, k;

for (i=0; i<cellNum; i++) {

cellptr = cellArray + i;

for (j=0; j<cellptr->netcount2; j++) {

netptr = netArray + cellptr->net2[j];

for (k=0; k<netptr->cellcount2; k++) {

cellptr2 = cellArray + netptr->cell2[k];

/* user code */

}

}

}

The following code iterates on all cells that are connected to a single net.

NET *netptr;

CELL *cellptr;

int i, j;

for (i=0; i<netNum; i++) {

netptr = netArray + i;

for (j=0; j<netptr->cellcount2; j++) {

cellptr = cellArray + netptr->cell2[j];

/* user code */

}

}

You can randomly select a CELL using a program statement as follows.

/* selection of any CELL */

CELL *cellptr = cellArray + (rand() % cellNum);

Another structure that you should know is STAT defined below, which contains statistical information.
typedef struct stattype{

 int max_net_per_cell;

/* maximum value of net2 */

 int max_cell_per_net;

/* maximum value of cell2 */

 double avg_net_per_cell;

/* average value of net2 */

 double avg_cell_per_net;

/* average value of cell2 */

 int max_cell_width;

/* maximum width */

 int min_cell_width;

/* minimum width */

 int max_cell_height;

/* maximum height */

 int min_cell_height;

/* minimum height */

 double avg_cell_width;

/* average width */

 double avg_cell_height;

/* average height */

 int feed_width;

 int max_cell_size;

/* maximum size of the cell */

 int min_cell_size;

/* minimum size of the cell */

 double avg_cell_size;

/* average size of the cell */

 /* standard deviation */

/* */

 double sig_net_per_cell;

 double sig_cell_per_net;

 double sig_cell_width;

 double sig_cell_height;

 double sig_cell_size;

}STAT;

4. Other useful function
Int randomize() : Before you call rand() function which generates a random number, you should set the initial seed with srand() function. The function randomize() initializes rand() function by setting the seed of srand() with the present time. The return value of this function is the seed that we used for srand().
5. How to measure the execution time
To measure the execution time, we should profile the source code after compiling it with –pg option. To do this, first open the makefile and then modify ‘CC=gcc’ to ‘CC=gcc –pg’. If the execution file, ‘part’ is created after running ‘make’, profiling should be done as follows:

$ part

$ gprof part

6. How to modify the program
There is annotated statement in part function of pmain.c. Here you write your own partitioning code.
