4541.633A SoC Design Automation
                                         2008. 6. 4


Final Examination

4541.633A SoC Design Automation

June 4, 2008
Name:___Solution_______

- This is an open book examination.

- You may write your answers in English, Korean, or both.

Consider designing a bus matrix for on-chip communication in an SoC. Through simulation of the application for 108 cycles (in terms of bus clock), the total number of transactions between a master and a slave has been found to be 107, where each transaction consists of reading or writing 16 bytes of data. Assuming that the data bus width is 32 bits and the required communication bandwidth between the master and the slave is 8*107 bytes/second, determine the minimum bus clock frequency that satisfies the communication bandwidth requirement. [10 points]


[image: image1]

NoC (Network-on-Chip) architecture is said to be more scalable than bus-based communication architecture (including bus matrix). Defend it by describing how the cost (silicon area) and performance (latency and/or throughput) vary according to the increase of the number of components connected by the communication architecture. [10 points]


[image: image2]

Both of the two techniques, 'split transaction' and 'out-of-order transaction completion', are used to better utilize the bus resource, thereby enhance the overall system performance. Explain the major differences between the two techniques. [10 points]


[image: image3]


B. Lin and J. Cortadella have proposed similar software synthesis approaches based on Petri net. Since they do not use a separate scheduler, the scheduler overhead is removed and the synthesized code executes fast. However, to execute multiple communicating processes in a proper order without a scheduler, they serialize the processes by duplicating code segments as necessary, which causes code explosion problem. Whereas Nacul's approach achieves speedup without any code explosion problem. Explain how it solves the scheduling problem and achieve the speedup without code explosion. [10 points]


[image: image4]


In Y.-T. Li's instruction cache modeling for software performance estimation, how many disjoint CCGs (cache conflict graphs) are built and how many nodes are created in a CCG? Give the answer with explanation. [10 points]


[image: image5]

1. A micro-coded control unit is to be designed for a dataflow graph scheduled as shown below. 

      
[image: image6.emf]NOP

v

0

-

v

4

v

10

<

v

11

+

v

9

-

v

5

NOP

v

n

C-step 1

C-step 2

C-step 3

C-step 4

+

*

v

3

*

v

1

*

v

2

*

v

6

*

v

7

*

v

8

C-step 5

C-step 6

C-step 7


(1) Obtain horizontal micro-code for the control. [10 points]


[image: image7.emf]0

0

0

1

1

0

0

v8

1

0

0

0

0

0

0

v9

0

0

1

0

0

0

0

v4

0

1

0

0

0

0

0

v5

0

0

0

0

0

1

1

v6

0

0

0

1

1

0

0

v7

0

0

0

0

0

0

1

v10

0 0 0 0 7

0 0 0 0 6

0 0 0 0 5

0 1 0 0 4

0 1 0 0 3

1 0 1 1 2

0 0 1 1 1

v11 v3 v2 v1 C-step


(2) Perform compaction on the horizontal micro-code using vertex coloring. If there are multiple solutions with minimum number of colors, then choose the one that minimizes the width of the control memory. [10 points]


[image: image8.emf]v1 v2

v6

v3 v7

v8

v10

v4

v11

v5

v9

v9 00 7

v5 00 6

11 (v4) 5

00 4

v8 v7 10 (v3) 3

v11 00 2

v10 v6 v2 01 (v1) 1

2 bits 2 bits 2 bits 2 bits C-step

v1 v2

v6

v3 v7

v8

v10

v4

v11

v5

v9

memory width = 8

May obtain a different solution such as the one shown below.

It has the same # of colors, but memory width = 9


2. Consider the following pseudo code for list scheduling.

     
[image: image9.emf]LIST_L (G(V, E), a) {

l

= 1;

repeat {

for each resource type 

k

= 1, 2, ..., 

n

res

{

Determine candidate operations 

C

l,k

;

Determine unfinished operations 

U

l,k

;

Select 

S

k



C

l,k

vertices, such that 

|S

k

| + |U

l,k

|



a

k

;

Schedule the 

S

k

operations at step 

l

by setting 

t

i

= l



i

: 

v

i



S

k

;

}

l = l + 

1;

}

until (

v

n

is scheduled);

return (T);

}



(1) How you would modify the code to allow chaining? [10 points]


[image: image10]

(2) Consider adding three numbers (S=A+B+C) with two adders connected in cascade as shown below (no register between the two adders). Then the total delay is much less than twice the delay of one adder (think about the critical path in two cascaded ripple carry adders) and so the two adders may be chained without increasing the clock period. This technique is called bit-level chaining. The amount of delay reduction depends on what kind of functional units are chained.

                     
[image: image11.emf]A B C

S

+

+


Explain how you can modify the pseudo code for list scheduling to apply bit-level chaining wherever possible. [10 points]


[image: image12]

3. In the bus-invert coding shown below, we need to consider the overhead of power consumption to see the effectiveness of the approach. Except the XOR gates and the invert signal line, what else does it have as a source of the overhead? [10 points]


[image: image13.emf]high-capacitance




[image: image14]

4. Dynamic voltage and frequency scaling is used in the design of a hard real-time system with a variable speed processor. Explain what we can do to reduce the power consumption when a task is finished earlier than the expected time (the expected time is calculated based on the worst case execution time). Assume that rate-monotonic priority assignment is used for the priority-based preemptive scheduling. [10 points] 


[image: image15]

Good luck!!




































They still use a scheduler, but without OS intervention. The entire synthesized code is a single process and processes are implemented as functions called by the scheduler.


Therefore, the scheduler overhead is minimized.


Since a scheduler is used to schedule the code segments (AEBs) dynamically, they don't need to serialize the code statically. So there is no code explosion problem.








The logic to determine the value of the invert signal.





bandwidth_requirement = ((8*107bytes/sec) / (4bytes/word)) = 2*107words/sec


per_cycle_transfer = (107trans)*(16bytes/trans)/(108cycles) = 4*10-1words/cycle


bus_clock_frequency = bandwidth_requirement/per_cycle_transfer


= (2*107words/sec)/(4*10-1words/cycle) = 5*107cycles/sec = 50MHz








Split transaction allows another master to be granted with bus access in the middle of a slow bus transaction.


- between two different masters


- one transaction is stopped and resumes when the other transaction is completed





Out-of-order transaction completion allows another thread running on a master to complete its transaction earlier than the thread that requested a transaction earlier.


- between two different threads on the same master


- two transactions with different id run concurrently

















In a bus-based system, since the wire lengths as well as the number of wires increase as the number of components increases, the total area increases fast (super-linear). In addition, if the system uses a bus matrix, the size of the bus matrix also tends to grow faster than the number of components. In NoC, however, since wires connect only neighbors, the area cost increases linearly with the number of components.


Since the wire-lengths remain the same in NoC, the clock frequency remains the same without pipelining the wires. The latency can increase, but the throughput can be maintained, which can hardly be achieved with bus-based system.








Since one cache conflict graph is built for each line, the total number of disjoint CCGs will be the same as the number of cache lines.


In a CCG, the number of nodes will be the number of code blocks mapped to the cache line corresponding to the CCG plus two (a start node and an end node).





The answer is similar to the one for problem (1). In this case, however, we need to consider adding different delay value depending on what combination of functional units are chained. So we may assume maintaining a table with delay numbers for each combination. During the scheduling, we look up the table for the delay number for the corresponding combination and check to see if it does not exceed the cycle boundary. For the priority calculation, we can also use the numbers in the table.





(There can be different approaches, so the answers can be different.)





Before going on to the next control step, continue scheduling new candidate operations in chained form if the resource is available and it fits within the current cycle time. If there is no such candidate, then go to the next control step.


For the priority calculation we may calculate the critical path length to the sink node by adding up the delay of each operation (instead of adding up the number of cycles taken by each operation) on the path. 





(There can be different approaches, so the answers can be different.)








If there is a task in the Run Q, then execute it slowly considering the slack time. 


If there is no task ready to be executed, then shut down the processor.


 








/ 110








PAGE  
8

_1274035789.ppt


		C-step		v1		v2		v3		v4		v5		v6		v7		v8		v9		v10		v11

		1		1		1		0		0		0		1		0		0		0		1		0

		2		1		1		0		0		0		1		0		0		0		0		1

		3		0		0		1		0		0		0		1		1		0		0		0

		4		0		0		1		0		0		0		1		1		0		0		0

		5		0		0		0		1		0		0		0		0		0		0		0

		6		0		0		0		0		1		0		0		0		0		0		0

		7		0		0		0		0		0		0		0		0		1		0		0






















































_1274036223.ppt


v1

v2

v6

v3

v7

v8

v10

v4

v11

v5

v9

v1

v2

v6

v3

v7

v8

v10

v4

v11

v5

v9

memory width = 8



May obtain a different solution such as the one shown below.

It has the same # of colors, but memory width = 9

		C-step		2 bits		2 bits		2 bits		2 bits

		1		01 (v1)		v2		v6		v10

		2		00		v11

		3		10 (v3)		v7		v8

		4		00

		5		11 (v4)

		6		00		v5

		7		00		v9








































_1274040815.ppt


high-capacitance
































_1274012562.ppt


LIST_L (G(V, E), a) {

	l = 1;

    repeat {

        for each resource type k = 1, 2, ..., nres {

		     Determine candidate operations Cl,k;

		     Determine unfinished operations Ul,k;

		     Select Sk Í Cl,k vertices, such that |Sk| + |Ul,k| £ ak;

		     Schedule the Sk operations at step l 

                by setting ti = l "i : vi Î Sk;

	    }

	    l = l + 1;

	}

	until (vn is scheduled);

	return (T);

}








_1274020909.ppt


v10

<

 v11

+

v9

C-step 1

C-step 2

C-step 3

C-step 4

+

C-step 5

C-step 6

C-step 7



NOP

v0



-

v4



-

v5



NOP

vn

*

 v3



*

  v1



*

  v2



*

  v6



*

  v7



*

  v8










_1274011277.ppt


A

B

C

S

+

+








