SEOUL NATIONAL UNIVERSITY SCHOOL OF MECHANICAL AND AEROSPACE ENGINEERING

SYSTEM CONTROL		Fall 2014
Midterm Exam Solution Closed book, closed note		Date: October 21, 2014 (Tue) 11:00-12:10
Student ID:	Name:	
[1] (15 points) Describe followings:(1) linear dynamic systems		Problem Points
		1(15)
		2(10)
		3(10)
		4(15)
		5(15)
		Total (65)

(2) Control system

(3) Stability

[2] (10 points) Obtain the condition of *K* for stabilizing the following system using Routh's stability criterion.

Fig.2 Feedback control system

[3] (10 points) Obtain the steady state values of the following equations if the values exist.

(1)
$$Y(s) = \frac{4}{s(s+1)(s+2)(s+3)}$$

(2)
$$Y(s) = \frac{3}{s(s+1)^2(s-2)}$$

[4] (15 points) Consider a system shown in the Fig.4 below.

Fig.4 Feedback control system in the presence of disturbance

(1) When D(s) = K, i.e., proportional control, obtain the transfer function $G_W(s) = \frac{Y(s)}{W(s)}$.

(2) Obtain the steady state output for the unit step disturbance, i.e., w(t) = 1.

(3) Design a PI controller such that the steady state output for the unit step disturbance is zero.

[5] (15 points) Consider a feedback control systems in Fig.5-(a). The root loci of the system are shown in Fig.5-(b).

Fig.5-(b) Root locus of the feedback control systems

(1) Obtain the open-loop transfer function of the system, $\frac{B(s)}{A(s)}$, where $\left|\frac{B(1)}{A(1)}\right| = \frac{1}{6}$.

(2) Determine the angles of asymptotes of the root loci (as *s* approaches infinity).

(3) Determine the proportional gain, K, where the root loci across the imaginary axis by use of Routh's stability criterion.