SEOUL NATIONAL UNIVERSITY

SCHOOL OF MECHANICAL AND AEROSPACE ENGINEERING

SYSTEM CONTROL Fall 2014
Final Exam Date: December 11, 2014 (Th)
Closed book, closed note 11:00-12:30 am
Student ID: Name:
Problem | Points
[1] (20 points) Describe followings:
I 1(20
(1) Linear Control Systems SOll]thl] ( )
o _ 2(15)
Systems: combination of components working together
Control : Applying inputs to the system to correct or limit deviation of the output 3(15)
values from desired values
4(20)
Linear superposition
5(15)
(+1)Open-loop/closed- loop control systems
(+1)feedback control system Block diagram 6(10)
. 7(20
18 A superposition A2 ™ +2 (20)
Control A7 +1 Total
System 447§ +2 (115)

(2) Stability

Definition: equilibrium, linear asymptotic stability
Linear system stability: Re(Pole)<0

Nyquist stability criterion (+1)
A Ed9d oA

Equilibrium point = =% #}x]H -1
A A 2=E) - A wkx] -3
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(3) controllability and observability

Definition : state transfer
A system is said to be controllable at time t0 if it is possible by means of an unconstrained control vector to
transfer the system from any initial state x(t0) to any other state in a finite interval of time.

State equation X = Ax+ Bu
State feedback, controllability condition, controllability matrix C =[B AB A’B --- A"'B]

State-feedback, regulator pole (A-BK)
(+1) separation property

Definition: observability
A system is said to be observable at time t0 if, with the system in state x(t0), it is possible to determine this state
from the observation of the output over a finite time interval.

. X=Ax+Bu
Observer equation
y =Cx
P
CA

Observability matrix O =| CA’

CAnfl

Observer pole (A-LC)

Z} cont/obs matrix A2 ™ ¢l -2
(Cont/obs matrix & 2] -1)

ZF 713 g A glew -3

F7F A 9l o +1(closed loop pole )

(4) State, state equation, state space

State x:
The smallest set of variables such that knowledge of these variables at t=t0 , together with the knowledge of the
input for t>t0, completely determines the behavior of the system at any time t>t0.

State equation
X=Ax+Bu

y =CX

State space:
The n-dimensional space, whose coordinate axes consist of the x; axis, X, axis, ..., X, axis is called a state space.
Any state can be represented by a point in the state space
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State A7 +2
State equation +2
state space A +1

[2] An inverted bar mounted on a motor-driven cart is shown in Figure below. The objective of the control
problem is to transfer the position of the cart to any desired place and to keep the bar in a vertical position. The
inverted bar is unstable in that it may fall over any time in any direction unless a suitable control force is applied.
Here we consider only a two-dimensional problem in which the pendulum moves only in the X-Y plane. The
control force F is applied at the cart. Assume that the center of gravity of the bar is at its geometric center.

77222

2
16 =mxLcoso—m| L é+mg£sin¢9
2 2 2

The velocity of the cart can be controlled by a motor and the motor angular speed can be represented as

w(s) = K u(s)
1+7s

Where

o) = AL,

X(t)=r-6,(t),and u(t) is the control input.

(1) Define the state as follows:

X, 0
‘o X, _ o
X, X
X, X

If we consider € and X as the outputs of the system, then
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MR

Obtain a state-space model of the system. The model is of nonlinear dynamics. And then obtain a linear
state-space model assuming that the @is small.

Solution)

Bar of mass, m, and, moment of inertia, |

Equation of motion of the bar:
> F =R, =m,
> F,=R,—mg=my,

> M :RX%COS¢9+ Ry%sin9= 16

Equation of motion of the motor; no slip condition

2
J ddtezm =T-F.-r
()
d?x
MF: FX—RX

No slip condition: x=r60 = X=r@_

Combining the equation (*) with no slip condition
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2
34, =T—r(M ax, ij
dt
J+r*M)d, =T -r-R,

(%H\/l)x:l—Rx
r r

Combining the equation of motion of bar and motor
. L LV . L
16 = mX‘—cosH—m(—j €+ mg—sin@
2 2 2
(iz-i- M +mjx’+ mh(ézsine—écose) L
r 2 r
Motor speed control can be represented as

k
u(s
1+7s (s)
6 +6 =k-u
X+ X=r-k-u

a(s) =

Then

2
Ié:ml(—x+r-k-u)£cos¢9—m L é+mg£sin¢9
T 2 2 2

X+ X=r-k-u

Set state as

x:[e 0 x X]T

X =0=X,
, 1 [ m_ L L . m L }
X, == —— X~ COSX + Mg —sinx, +—r-K-—cosx -u
{ (Lj} T 2 2 T 2
l+m| —
2
X, = X=X,
>‘<4:—1x4+1r-k-u
T T

Linearized model, 8 = x, 0 = sinx, = X, COSX, = X,
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X1:9:X2

X—;[mgh _E.LX +mr.k£u:|
2{ (Lﬂ 2N TR
l+m| —
2
Xy =X=X,
>'<4:——x4+£r-k-u

T T

State equation form trial +1
Nonlinear State equation +1
Linearization +3

(2) Assume that the measurements of X, (t), X, (t), and x, (t) are available. Therefore, you can use a control
law of following form:

u(t) = _kl ’ X1(t)_k2 'Xz(t)_k4 'X4(t)

Using the linearized model obtained in problem (2), determine the gains, k, (t), k,(t), and k, (t) so that
X, (t) tends to zero as t increases, i.e.,

!imxl(t):o.
Solution)
X, =Ax —Bx,+C-u
= _zé/a)n X, — a)nle
L m L m L
mg— —— —r-k—=
where, A= 2 — B= 2 —C="+ 22
L L L
{I+m( )} {Hm(j} {I+m( j}
2
Since X, =X, X, =%
5(1+2§’a)n>'(1+a)n2X1=0
Therefore,

u(t) = é(—zaonxz — 0,2 ~ A%, + BX,)

__A+con2 _ 2o, B

X, +— X
C c *c™
2
,-,kl=A+C“)n |<2=2f:‘”n k4=—%5>o C>0

Concept suggestion (u = -kx) +1
Explanation +2
Input Calculation +2
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(3) It is possible to have both X, (t) and x, (t) tends to zero by the control law of the form in the problem (2).

What happens, in this case, to the position of the system? Analyze the behavior of the system.

Solution)

X, = 1 X, +lr k(=KX — kX, —k,x,)
T T
1

:—(—+£r-k-k4jx4 +1r-k(—klxl—k2x2)
T T T

X3 =%,

Since X, (t) >0 and x,(t) >0 ast—

X, = 1(1+r-k-k4)X4=0 Cky==—")

T

Therefore, X, (t) = const.
i.e. % (t) =X, (t) = const.

. %y(t) and X, (t) do not converge to zero.

Concept Explanation +2

X(t) and %4 ® do not converge to zero. +1

Whole process +2

[3] (15 points) Consider a unity feedback closed-loop control system shown below

C(s)

_|_

A J

Ge(s) M G(s)

When the controller is proportional control, i.e.,
G.(s)=K =10

The Bode diagram of the system is shown in Figure 5.
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K=10
20
~——_
T~
10 S&1
@ o 1
= :r\iiﬁ\d B (Gain margin)
T~ 1
CT i X
)
—20 | ! N
i '
i N
=30 : '
| ! \
0° T H
i :
! :
—90° : I
! '
—__‘—‘—~ 1 1
< Ty :
180° (Phase margin) +21° ___E
At F
\___\
—-270°
0.2 04 06081 2 4 6 810
)

(a)

Fig. 5 Bode diagram of the system

(1) Sketch the Nyquist plot of the system.
Solution:

4 1m[G]

)

1 Re[G]

G(s) — Plane
(2) Determine the stability of the system using Nyquist Stability Criterion.

Solution: stable ;
Since the Nyquist plot of G(s) makes no enclosure of the -1+ jO point, the system is stable.
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4 Im[G]

)

1 RefG]

G(s) — Plane

(3) When the control gain is increased from 10 to 100, obtain the phase and gain margins of the
system.

Solution:
|G| : 10 times = 20log|G| : + 20dB
- Gain margin : -8dB +20 dB - -12 dB (12dB above 0 dB)

-> Corresponding phase is -210 degrees
-> Phase margin : -30 degrees (30degrees below -180degrees)

[4] (20 points) The input u, and the output vy, of the single-input, single-output system are related by
3 2 2
3t3 y(t)+6§I 5 y(t)+2—y(t)+3y(t) 2 d u(t) 5—u(t) 5u(t)

(1) Find the transfer function fromU to .

Y(s)  2s°-5s-5
U(s) s°+6s°+2s+3

(2) Is this system stable?
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charac.eqn =s° +6s° +2s+3=0

s> 1 2

52 6 3

¢! s_12-3
2 6

s’ 3

.. Stable (No sign change)

(3) If u(t)=2for all t>0, what is the steady state value of y(t)?

U(s):E
S
Y(s 2s*-5s-5 2
Y(S):Q'U(S): 5 5 .
U (s) S°+6S°+25+3 S

V() =limsY(s) =s-

3

2s°-5s-5 2 _ 10
s +65°+25+3 s

(4) Suppose that the input is sinusoidal, u(t) =sin(10t) . What is the steady state amplitude of the output

y(t)?
u(t) =sin(10t) = X sin(10t) .. X =1
. . . —200-50j-5 —205-50j | +/205%+502
Y (jw)| =[G (jw)|lU (jw)| = : — 1= . =
—~1000j-600+20j+3 —980j-507| /9802 + 5972

[5] (15 points) Consider a system shown below.
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R(s) C(s)
Ge(s) M G(s)

A J

G.(s)=K

G(s):%

(1) Under what conditions is the system stable?

Solution)
1
c_ s _x
R 1.kl s+K
S

The system is stable if K >0
TFE 2oH 5
wkstow 34
(2) If the system is stable, what is the time constant?

. 1
Time constant T =—

ol HE

i |o
NHN

°ow53
=44

ot

(3) If the system is stable what is the steady-state gain fromrtoy ?

Steady state gain : 1

S o
4 Qo 23
g utom 54

[6] (10 points) Block diagram for two systems are shown below. The constant £ is positive, > 0. The system
is stable if and only if K >0 and K > . What are the conditions on K, K, and z such that the system on
the right is stable?
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- " [ N " - [ 1 R
BPT : STJ—| : —+ RPT " 5—F 3 :
KD R’D - .

Solution)

Inner loop transfer function :

1
s(s— /) B 75+1
K S 1 s(s—p)(rs+D)+Kys
P rs+1s(s—p)

B 7s+1
Cs[(s—B)(rs+1) + K, ]

Closed loop transfer function:

y K, (7s+1)

T s[(s—B)(rs+1) + K, ]+ K, (r5+1)
B K, (7s+1)
s[rs?+(1-Br)s— B+ K, ]+ K, (r5+1)
B K, (7s+1)
8%+ (1= fr)st + (K + Kot = B)s+K,

Routh’s stability criterion

s° T Ky +Kpz =S
s 1-fr K,

s A B

s C

a0y + Koz = f) -1 K,
- 1-p7

For stability

#Ho]#] 12/ 16



1
1)1- 0, —
)1-pr > T<[)’

2) A>0

3) K, >0
A A A 2~ € ] Transfer function < -8H+ 5 7
Routh’s Arrat 7-3}'H + 3 %

HAEH 24, drekE 2 +1 4, £ =0 o har AW 0 3 Al 270 wbE 1-85HH 0 7.

[7] (20points) Consider an autonomous vehicle system shown in the Figure below:

Desired Path

The error dynamics are represented as follows:

e _ :
d—ty:vy+vxsmew—ey;/smew
de
_W:d_t//_dl//r:y_dwrzﬂw
dt dt dt dt
ey/:l//_!//r
dy Vv
w(t) = ——L=—=x
® dt R

Where v, is the vehicle speed and R is the radius of the path. The vehicle yaw rate, y, is proportional to the
steering input, o, i.e.,

dy(t)
b K S(t)

(1) Assuming that the vehicle speed, v, , is constant and the vehicle lateral velocity, v, , is very small, obtain
a linear state equation of the steering control system. Here, define the state and input as follows:

#o]#] 13/ 16



X =€,
X, =€,
y(®) = x, ()

u(t) =o(t)
Solution)

Simplified model

de
_y -
dt v
de
d—:’:y+w: K,-o(t)+w

| |10 v % 0 0 B
MS A MR
y=X

Score: 4 4
simplified model state equation 7l & slvt 5% | v} -2
G AR A 1A

(2) Is the state equation model obtained in (1) controllable?

Solution)

0
Controllable C =[B AB]=[1 \;} Rank(C) =2

Score: 3 &
Controllability matrix 4 ¢ 2™ -3
G AR A 1A
ek 2w 1A

X (t)—>0
(3) Design a state feedback controller such that 1( ) as the time, t, increases when the disturbance, w,
X,(t) >0
is zero.
Solution)
U=—KX — kzxz
Score: 3 7

34
g A1
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(4) For the controller designed in (3), compute the steady state output error when the disturbance, w, is
constant.

Solution)

X=[A- BK]x+[ﬂw

0 A 0
= X+ |w
o el

At steady state,

Score: 4 A
o AR A4 1 -

(5) Design a steering controller such that the steady state output error tends to zero when the disturbance, w,
is constant.

. . vV, .
Solution) zero with constant w = _EX' I.e., R = constant, VX = constant.

Let

Xi :VXXZ
=V, (k.u+w)
u(t) =—KX - kzxz - k3X3
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X, :vxk (=KX, =K X, —KyX,) +V, W
X =V, KK X —v,.KKX, =V K KX, + VW

Since
xzz%
X; =X,W=0

Xl = _karklxl _karkz i_V><krk3xl
Vv,

= Xl + |<rk2x‘1 +karkl).(1 +kark3xl = 0

We can select k , k,,k, that makes x,(t) >0 as t >

Score: 6 &
| control term & TFE A1 S R Ao BBl 37
State x3 A 9] &} #] &1 FE= A9 37
G AR A1 A
w
0 YT % u + ¥ X
> K, K,
e, — I\
(%)
k, k
2
-1 \

Y
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