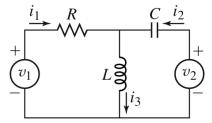
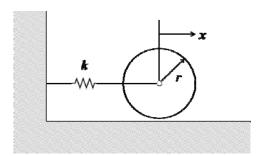

SEOUL NATIONAL UNIVERSITY SCHOOL OF MECHANICAL AND AEROSPACE ENGINEERING


SYSTEM ANALYSIS		Spring 2015	
Midterm Exam SOLUTION Closed book, closed note		Date: April 21, 2015 (Tu) 19:00~21:00	
Student ID #:	Name:		
[1] (20points) Describe followings:			
(1) Linear Dynamic Systems		Problem	
		No Points	
		(points)	
		1(20)	
		2(10)	
		3(10)	
		4(10)	
		5(10)	
		6(10)	
		7(10)	
(2) Transfer Function		Total(80)	

(4) Time constant, natural frequency, damping ratio	(3) state, state space, and state equation
(4) Time constant, natural frequency, damping ratio	
(4) Time constant, natural frequency, damping ratio	
(4) Time constant, natural frequency, damping ratio	
(4) Time constant, natural frequency, damping ratio	
(4) Time constant, natural frequency, damping ratio	
(4) Time constant, natural frequency, damping ratio	
(4) Time constant, natural frequency, damping ratio	
(4) Time constant, natural frequency, damping ratio	
(4) Time constant, natural frequency, damping ratio	
(4) Time constant, natural frequency, damping ratio	
(4) Time constant, natural frequency, damping ratio	
	(4) Time constant, natural frequency, damping ratio

[2] (10 points) Obtain the transfer function $V_o(s)/V_i(s)$ for the op-amp system shown in Figure below.

[3] (10 points) Obtain the transfer function $V_2(s)/V_1(s)$ for electric circuit shown in Figure below i_1 R C i_2

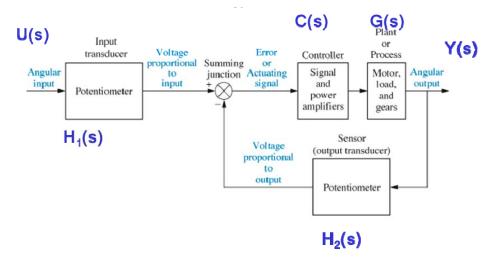


[4] (10points) Consider a system described as following state equation.

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 2 \\ 0 & -1 & 3 \\ 0 & 0 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u, \quad y = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

- (1) Obtain the transfer function Y(s)/U(s).
- (2) Compute the unit step response.

[5] (10points) Consider a mechanical system shown in the figure. Assuming no slip condition, compute the natural frequency of the system. The mass of the roller is m and the moment of inertia is J.



[6] (10points) Consider a system represented as a transfer function. Obtain the state model for the transfer function model

$$\frac{Y(s)}{U(s)} = \frac{10}{3s^2 + 6s + 10}$$

- (1) Obtain the state model for the transfer function model
- (2) Sketch the step input response of the system

[7] (10points) A system is represented as a block diagram as below. Obtain the transfer function $\frac{Y(s)}{U(s)}$.

