MIDTERM

- Do not open exam until told to do so.
- 'How you arrived at your answer' is much more important than the answer itself. Read the following problems carefully, and make sure you show your work step by step.
- Please write down the answer under the given space. If you need extra space, please use a separate sheet for each problem.
- You can use the information given in the last page of this exam if you don't remember formulas needed to solve the problems.
- Ask questions if you don't understand what the problem says, and **GOOD LUCK!**

Student ID:	
Name:	
1	/ 20
2	/ 10
3	/ 10
4	/ 15
5	/ 15
6	/ 20
7	/ 10
Total	/ 100

1. [5+5+5+5 =20 pts]

- (a) Fill in the blank space: Let AB = C. Then the rows of C are combinations of the rows of ____. So $\mathrm{rank}(C) \leq \mathrm{rank}(\underline{\hspace{0.3cm}})$. Since $B^TA^T = C^T$, $\mathrm{rank}(C) \leq \mathrm{rank}(\underline{\hspace{0.3cm}})$
- (b) True or False? Describe briefly "why". v is an arbitrary vector in \mathbb{R}^n . Then $I-vv^T$ is diagonalizable.
- (c) Prove the following: If A is symmetric and orthogonal, eigenvalues of A are ± 1 .

(d) Prove the following: If C is the cofactor matrix of the singular matrix A, then each columns of C^T is in the nullspace of A. 2. [10 pts] As the point (x_1, x_2, x_3) in \mathbb{R}^3 moves on the unit sphere centered at (0,0,0), what is the maximum value for $q(x_1,x_2,x_3)=19x_1^2+19x_2+17x_3^2-28x_1x_2$?

3. [10 pts] Under what condition on b_1, b_2, b_3 is the following solvable? Find all solutions when that condition holds.

$$x + 2y - 2z = b_1$$

$$2x + 5y - 4z = b_2$$

$$4x + 9y - 8z = b_3$$

4. [15 pts] Show that

$$\int_0^\infty \frac{\sin w}{w} \cos xw \ dw = \begin{cases} \pi/2 & \text{if } 0 \le x < 1\\ \pi/4 & \text{if } x = 1\\ 0 & \text{if } x > 1 \end{cases}.$$

5. [15 pts] Show that the solution of

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2} - \infty < x < \infty, t > 0$$

with u(x,0) = f(x), $\frac{\partial u}{\partial t} = g(x)$ can be written as

$$u(x,t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \left(F(w) \cos cwt + G(w) \frac{\sin cwt}{cw} \right) e^{-iwx} dw.$$

What are F(w) and G(w)?

6. [20 pts]

The steady-state temperature u(x,y,z) in the rectangular parallelepiped $0 < x < a, \ 0 < y < b, \ 0 < z < c$ satisfies

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0.$$

If the top (z=c) is kept at temperature f(x,y) and the remaining sides are kept at 0 temperature, find the solution.

7. [5+5=10 pts]

(a) True or False? Describe briefly "why". The functions $f(x)=x^2-1$ and $g(x)=x^5$ are orthogonal on $[-\pi,\pi]$.

(b) Suppose that $f(x) = x^2 + 2$ (0 < x < 3) is expanded in a Fourier series, a cosine series, and a sine series. To what value will each series converge at x = 0?

• Fourier series for a periodic ftn with a period 2π :

$$f(x) = a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx).$$

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \ dx$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \ dx$$

• Fourier integral

$$f(x) = \frac{1}{\pi} \int_0^\infty (A(\omega) \cos \omega x + B(\omega) \cos \omega x) d\omega$$

$$A(\omega) = \int_{-\infty}^{\infty} f(x) \cos \omega x \, dx$$
$$B(\omega) = \int_{-\infty}^{\infty} f(x) \sin \omega x \, dx$$

• Fourier transform and its inverse:

$$\mathcal{F}(f) = \hat{f}(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-i\omega x} dx$$
$$\mathcal{F}^{-1}(\hat{f}) = f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{f}(\omega)e^{i\omega x} d\omega$$