FINAL

- Do not open exam until told to do so.
- 'How you arrived at your answer' is much more important than the answer itself. Read carefully, and make sure you show your work *step by step*.
- Please use a separate sheet for each problem.
- Ask questions if you don't understand what the problem says.
- I thank you all, and wish you a wonderful winter break. But before that, **GOOD LUCK** tonight!

Stud	ent II	D:	
Na	ıme: .		
	1	/ 10	
	2	/ 15	
	3	/ 15	
	4	/ 30	
	5	/ 20	
	6	/ 10	
[l otal	/ 100	

1. [10 pts]

- (a) Find a, b, c, d such that $f(z) = x^2 + axy + by^2 + i(cx^2 + dxy + y^2)$ is analytic.
- (b) Suppose that f(z) = u(x, y) + iv(x, y) is analytic. Show that the family of curves $u(x, y) = c_1$ are orthogonal to $v(x, y) = c_2$.

2. [15 pts]

(a) Compute

$$\oint_C (z^2 + \frac{1}{z-2} + Re(z)) \; dz \;, \quad C \; : \; \text{the triangle with vertices 0, 1, 1} + i, \; \; \text{counterclockwise}.$$

- (b) Represent $\operatorname{Ln}(\frac{1}{1-\varepsilon})$ as a Maclaurin series and find the region of convergence of the series.
- (c) C: straight line segment from i to 2+i. Show that

$$\left| \int_C \operatorname{Ln}(z+1) dz \right| \le \log_e 10 + \pi/2$$

- 3. [15 pts] For $f(z) = \log_e |z| + i \operatorname{Arg} z = u(x, y) + i v(x, y)$,
 - (a) Check analyticity of f(z).
 - (b) Are u(x, y), v(x, y) harmonic? Why?

4. [30 pts] Show or compute the following:

(a)
$$\int_0^{2\pi} \frac{\sin^2 \theta}{a + b \cos \theta} d\theta = \frac{2\pi}{b^2} (a - \sqrt{a^2 - b^2}) \qquad (a > b > 0)$$

(b)
$$\text{p.v.} \int_{-\infty}^{\infty} \frac{\cos sx}{x^2(x^2+1)} dx = ?$$

(c) Use the following contour to show that

$$p.v. \int_{-\infty}^{\infty} \frac{e^{ax}}{1 + e^x} dx = \frac{\pi}{\sin a\pi} \quad (0 < a < 1)$$

5. [20 pts]

(a) Describe why f(z)=z+1/z is conformal at all values of z except $z=0,\ \pm 1.$

- (b) Under the mapping w = f(z),
 - (i) find the images of the points A and B, and the unit circle |r|=1.
 - (ii) show that a circle of r > 1 is mapped to an ellipse.
 - (iii) show that a ray $\theta = const$ is mapped to a hyperbola.
- (c) Are the hyperbolas and ellipses found in (b) are orthogonal? Why do you think so?

6. [10 pts]

- (a) Show that $f(z) = \tan(1/z)$ has an infinite number of singularities. Are any of these isolated ?
- (b) Does f(z) have a Laurent series that converges in a region 0 < |z| < R? Why?

$$\sin z = \sin x \cosh y + i \cos x \sinh y$$

$$\sin z = \frac{1}{2i} (e^{iz} - e^{-iz})$$

$$\cos z = \frac{1}{2} (e^{iz} + e^{-iz})$$

$$\cosh z = \frac{1}{2} (e^{z} + e^{-z})$$

$$\sinh z = \frac{1}{2} (e^{z} - e^{-z})$$