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 Recording 관련 eq.
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 Recording medium 관련 eq. 
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 Reconstruction 관련 eq. 
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 Virtual and real image 언급
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 Carrier freq. 관련 eq.
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 Virtual and real image의 shift 설명
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DIFFRACTIVE OPTICAL ELEMENTS

“The vast majority of optical instruments in use today use refractive or reflective optical
elements (c.g. lenses, mirrors, prisms, etc.) for controlling the distribution of light.
In some cases it is possible to replace refractive or reflective elements with diffrac-
five clements, a change that can lead to some significant benefits in certain applications.

Diffractive optics can be made to perform functions that would be difficult or impossi-
ble to achieve with more conventional optics (¢.g., a single diffractive optical clement
can have several or many different focal points simultancously). Diffractive optical
clements also generally have much less weight and occupy less volume than their re-
fractive or reflective counterparts. They may also be less expensive to manufacture and
in some cases may have superior optical performance (¢.g. a wider field of view). Ex-
amples of applications of such components include optical heads for compact disks,
beam shaping for lasers, grating beamsplitters, and reference elements in interferomet-
ric testing.

‘Along with these several advantages comes one significant difficulty with diffrac-
tive optical components: because they are based on diffraction, they arc highly disper-
sive (ic. wavelength sensitive). For this reason they are best applied in problems for
which the light is highly monochromatic. Such is the case for most coherent optical
systems. However, diffractive optics can be used together with either refractive optics
or additional diffractive elements in such a way that their dispersive propertics partally
cancel (cf. [274), [217), [99)). allowing their use in systems for which the light is not
highly monochromaic.

For additional background on diffractive optics, the reader may wish to consul
review articles [279),(98], and Vol. 2, Chapter 8 of [17].

Our discussion of the subject will consider in detail only one approach to the con-
struction of diffractive optics, known as binary optics. This approach s well developed
and applicable o a broad range of different applications.

7.3.1 Binary Optics

The l:n(mm come to have different meanings 1o different people, but
there are & 1 that are common and which can serve to define the field Eirs)
and foremost s the factthat binary optical elements are manufactured using VL SLab-
cication techniques, namely photolithography and micromachining. €GOS binary op-
tical elements depend solely on the surface relief profile of the optical element. They
are usually thin structures, with rlief patterns on the order of one to several microns in
depth, and as such they can be inexpensively replicated using well-established methods
of embossing. Surprisingly, the relief patterns utilized are often not binary at all, and
therefore in a certain sense these elements are misnamed. However, such elements are
usually defined through a series of binary exposure steps, and this fact has provided the
rationale for retention of the name.

Approximation by a stepped thickness function

Binaty optical elements have stepped approximations 10 ideal continuous phase
distributions. We briefly discuss the approximation process here, and then turn (0 the
most common methods of fabrication.

We suppose that a certain thickness function A(, y) is desired for the element (as
usual, xand yare the transverse coordinates on the face ofthe clement). Presumablly this
function has been derived from a design process, which may have been simple or may
have been quite complex itself. As an example of a simple case, the lement may be &
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FIGURE 7.28
Ideal sawtooth thickness profile for a blazed grating, and binary optic
approximation to that profile (N = 2).

grating of constant spatial frequency, the purpose of which is to deflect the incident light
through a certain angle with the highest possible optical efficiency. An example of a
more complex case might be a focusing element which generates an aspheric wavefront
such that certain aberrations are reduced or liminated. We shall assume that the desired
thickness function A(x, y) is known and that the problem at hand is how to fabricate a
thin relief clement that closely approximates this desired thickness function.

Anapproximation to the desired thickness function is made by quantizing that func-
tion to a st of 2V discrete levels (usually equally spaced). Figure 7.28 shows an ideal
phase grating profile with a perfect sawtooth period, and a quantized version of that
grating with 2V levels. The continuous blazed grating has the property that, if the peak-
to-peak phase variation it introduces is exactly 277 radians, 100% of the incident light
will be diffracted into a single first diffraction order (cf. Prob. 4-14). The binary op-
tic approximation to the grating is a quantized version with 4 discrete levels. More
generally 2 quantization levels can be realized through a series of N exposure and
micromachining operations, as described below. The peak-to-peak thickness change
of the quantized element is 2" times the peak-to-peak thickness of the unquantized
element.”

The diffraction efficiency of the step approximation to the sawtooth grating can
be obtained by expanding its periodic amplitude transmittance in a Fourier series. A
straightforward but tedious calculation shows that the diffraction efficiency of the gth
diffraction order can be expressed by [79]

inc2(a — %
= sincz(ziN)smc (d - %). (7-35)
sinc’(”-,ﬁ-

where ¢, is the peak-to-peak phase difference of the continuous sawtooth grating, and
is related to the peak-to-peak thickness variation (again, of the continuous grating)
through
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1y being the refractive index of the substrate and n; that of the surround, and A, being
the vacuum wavelength of the light.

Of special interest is the case of a quantized approximation to the blazed grating
with a peak-to-peak phase difference of ¢, = 2. Substitution in Eq. (7-35) yields

o
= sinet( ) e = 1) 37
=) () e

Consider for the moment only the last factor, consisting of the ratio of two sinc functions.
The numerator is zero for all integer ¢ except ¢ = 1, when it is unity. The denominator
is also unity for ¢ = 1, and is nonzero except when

bo =2 (7-36)

g-1=p2¥,

where p is any integer other than zero. For values of g for which the numerator and
denominator vanish simultaneously, I'Hpital’s rule can be used to show that the ratio
of the two factors is unity. Thus the factor in question will be zero except when

g=p2¥+1,
in which case it is unity. The diffraction efficiency therefore is given by
% 1
Ngaveny = smcz(p + 2—,,) (7-38)

As the number, 2V, of phase levels used increases, the angular separation between
nonzero diffraction orders increases as well, since it is proportional to 2V, The primary
order of interest is the +1 order (p = 0), for which the diffraction efficiency is

m = sinc (%) 39

Figure 7.29 shows the diffraction efficiencies of various nonzero orders as a function
of the number of levels. It can be seen that, as N — <, all diffraction orders except the

logiong o

FIGURE 7.29
Diffraction efficiencies of various
orders of a stepped approximation
to a sawtooth grating. The
parameter p determines the
particular diffraction order, with
the order number given by p2¥+1,

and the number of discrete levels
1 2 3 4N 5 json
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[image: image13.png]+1 order vanish, and the diffraction efficiency of that nonvanishing order approaches
100%, identical with the case of a continuous blazed grating with the same peak-to-peak
phase shift. Thus the properties of stepped approximation to the continuous blazed grat-
ing do indeed approach those of the continuous grating as the number of steps increases.

The fabrication process

Figure 7.30 illustrates the process by which a four-level binary optic approxima-
tion to a sawtooth thickness function is generated. The process consists of a number of
discrete steps, cach of which consists of photoresist application, exposure through one
of several binary masks, photoresist removal, and etching. Masks are usually made by
electron-beam writing. For a binary optic element with 2V levels, N separate masks
are required. Part (a) of the figure shows a substrate overcoated with photoresist, which
is exposed through the first binary mask, having transparent cells of width equal to
1/2¥th of the period of the desired final structure. After exposure, the photoresist is
developed. For a positive photoresist, the development process removes the exposed
areas and leaves the unexposed areas, while for a negative photoresist the opposite is
true. We will assume a positive photoresist here. Following the photoresist development
process, micromachining is applied to remove material from the uncovered portions of
the substrate, as illustrated in part (b) of the figure. The two most common microma-
chining methods are reactive ion etching and ion milling. This first micromachining
step removes substrate material to a depth of 1/2¥th of the desired peak-to-peak depth
of the grating. Now photoresist is spun onto the substrate a second time and is exposed
through a second mask which has openings of width equal to 1/2¥~!th of the desired

Expose Expose
B e T
Resist — L %
Substrate
(a) (e)
Micromachine Micromachine

(b) (d)

FIGURE 7.30
Steps in the fabrication of a four-level binary optic element.




[image: image14.png]final period, as shown in part (c) of the figure. Micromachining again removes the ex-
posed portions of the substrate, this time with an etch depth 1/2V~!th of the final desired
‘maximum depth, as illustrated in part (d) of the figure. For the case of a 4-level ele-
‘ment, the fabrication process now terminates. If there are 2V levels desired, N different
‘masks, exposures, development, and etching processes are required. The last etch pro-
cess must be to a depth that is 1/2 of the total desired peak-to-peak depth. A variety of
different materials can be used for the substrate of such elements including silicon and
glass. It is also possible to make reflective optical devices by overcoating the etched
profile with a thin layer of metal. With the use of electron beam writing, it is possible
to control the accuracy of the masks to about one-tenth of a um. When the profile is
‘more complex than binary, alignment of several masks is required, and the accuracy
is reduced.

Diffraction efficiencies of 80 to 90 percent are quite common for these types of
elements.

732 Other Types of Diffractive Optics

Attention has been focused above on binary diffractive optics, which are fabricated
by the techniques widely used in the semiconductor industry. Many other approaches
to fabricating diffractive optical elements exist. Some methods use similar substrates
to those mentioned above, but use different methods of micromachining, for exam-
ple diamond turning or laser ablation. Some differ through their use of photographic
film, rather than etchable substrates, as the means for creating the element. Computer-
generated holographic optical elements are an example that will be discussed in more
detail in Chapter 9. Some depend on more conventional methods for recording holo-
grams.

For an overview of the field, including examples of many different approaches, the
reader is referred to the proceedings of a series of meetings held on this general subject
(591, (601, [61], [62], [63].

7.3.3 A Word of Caution

The capability of semiconductor fabrication techniques to make structures of ever
smaller physical size has led already to the construction of diffractive optical elements
with individual feature sizes that are comparable with and even smaller than the size of
awavelength of the light with which the element will be used. Such small structures lie
in the domain where the use of a scalar theory to predict the properties of these optical
elements is known to yield results with significant inaccuracies. It is therefore impor-
{ant to use some caution when approaching the analysis of the properties of diffractive
optical elements. If the minimum scale size in the optical element is smaller than a
few optical wavelengths, then a more rigorous approach to diffraction calculations will
probably be needed, depending on the accuracy desired from the computation. For a
discussion of such issues, see, for example, Ref. [232].
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 광파의 생성을 위한 inverse transform 설명 
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 파장과 관련한 구조물의 한계 설명
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 방법1. lens law를 이용한 행렬 유도
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 방법2. 2가지 해로부터 역행렬을 구하는 방법
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 q(z=l2)와 q(z=0)과의 관계식 
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 far-field diffraction angle 
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Case1)

다양한 타입의 thick holograms으로부터 diffraction efficiencies를 찾기 위해서 특정 각도와 wavelength를 가진 grating을 reconstruction에 이용하거나 fixed grating에서의 Two-Wave Coupling을 분석하기도 한다.
이것은 특정한 analysis를 필요로 하는데, 예를 들어 Two-beam coupling의 경우 
[image: image22.jpg]n(r) = ny + ny cos(K-r +¢)
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 어떤 thick hologram의 analysis를 위한 geometry가 위와 같다고 가정할 때, grating 안의refractive index n 은 [image: image24.png]n(r) = ny + n,cos (K-7+ o)



으로 가정되는데, 이와 같은 n을 가진 grating안에서의 wave 분포를 고려하면, 다음과 같다.
[image: image25.png]1 1
E(r) = [EA,(r)e”“i’{» EAZ(r)e’ ]e’“‘+ complex conjugation




  이것을 Helmholtz equation에 적용해보면, [image: image27.png], = K; Bragg condition



 을 만족할 때 다음과 같은 식이 성립된다.
[image: image28.png]T+ ec
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  만약 이 Bragg condition이 만족되지 않으면 위의 식의 위상 term이 맞지 않게 되므로 성립할 수 없게 되어 결과적으로 coupling wave가 발생하지 않는다.
  이 식을 slow varying term을 없애고 정리하면,
[image: image29.png]eyt
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이고, 여기에서 [image: image32.png]A = [Te™®



로 정의하여 치환하면,
[image: image33.png]21
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으로 표현할 수 있다.
  위의 식에서 다시 [image: image36.png]U=, - b+




 의 경우를 고려하면,
[image: image37.png]oz, myz
,(2) = 1,(0)e™*cos? ncosﬂ)
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으로 정리될 수 있다. 위의 그림과 같은 구조에서 z = 0인 지점과 z = l인 지점을 intensity에 대한 두 식에 대입하여 정리한 뒤 그 비율을 계산하면 이것이 바로 thick hologram의 diffraction efficiency 이다.

Case 2)

아래 그림과 2개의 waveguide가 존재하고, 각 waveguide의 light field가 overlap될 때, 각각의 optical power는 다른 waveguide로 전달될 수 있다. 이를 Maxwell’s equation으로 나타내고 boundary condition을 이용하면 각각의 mode를 정할 수가 있다. 여기서 각 waveguide는 single mode이고, weak coupling을 가정하고 coupled mode theory를 이용하여 다음과 같은 분석이 가능하다.
[image: image39.png]yh




Waveguide간의 Coupling은 각각이 서로 독립적으로 하나만 있다고 가정하여 풀 수도 있고, 두 waveguide를 동시에 고려하여 풀 수도 있다. 여기서 coupling은 각 mode의 공간적분포나 propagation constant에는 영향을 주지 않는 것으로 한정한다. 
Coupling은 일종의 scattering effect라고 생각할 수도 있는데, 각 waveguide의 mode 진폭을 a1(z), a2(z)라고 하면 아래와 같은 1차 미분 방정식을 얻을 수 있는 데, 이를 coupled-mode 방정식이라고 부른다.
[image: image40.png]—J€ exp(j AB 2)ay(2)

= —jepexp(-jABz)a(z)




위 식에서 ß는 단위거리당 phase mismatch를 뜻하고,  
[image: image41.png]AB =B, -8B,




[image: image42.png]


는 굴절률과 ß 등에 의해 결정되는 coupling 계수이다. 
[image: image43.png]1 k2
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위의 coupled-mode equation에서 보듯이, a1의 1차 미분 즉 변화속도는 a2에 비례한다. 반대의 경우도 마찬가지이다. 그리고, 비례계수는 coupling계수와 phase mismatch의 곱으로 되어있는 것을 알 수 있다. 이 식을 풀어 보면, 아래와 같은 2차 미분 방정식을 구할 수 있다. 
[image: image44.png]jABz A
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[image: image45.png]


[image: image46.png]e=(C,Cy)
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위 식에서 a2(0)=0, 즉 z=0인 지점에서 두 번째 waveguide에 빛이 없다고 가정하면, 각 waveguide의 optical power는 아래와 같은 식으로 나타내어진다. 이 식으로 이용하면, optical power가 두 waveguide간에 주기적인 거리를 가지고 반복적으로 교환이 됨을 알 수 있다. 
[image: image47.png]AB\?
Py(z) = P-,((])[cosz“/z + (2—5) sin? yz}

o 12
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각 power는 오른쪽의 그래프와 같이 
[image: image48.wmf]p

g

의 주기를 가지고 출렁거린다. 
여기에서 두 waveguide의 조건이 일치할 때, 즉 n1=n2, ß1=ß2, Δß=0일 때는 두 waveguide가 phase match되었다고 하고, 이 경우에는 아래의 식과 같이 optical power가 간단한 식으로 표현된다. 
[image: image49.png]Py(z) = Py(0) cos® ez
P,(z) = Py(0)sin? €z.




위 식을 그래프로 나타내어 보면 아래와 같이, 각 waveguide간의 power가 0에서 100%까지 이동함을 알 수 있다. 
[image: image50.png]



위와 같은 성질을 이용하면, 동일한 조건의 waveguide간의 coupling되는 거리를 조절하여 (a)에서와 같이 power를 다른 waveguide로 보내주는 optical switch나, (b)에서와 같이 power를 두 waveguide로 분배하여 나누어 주는 coupler로 사용할 수 있다. 
[image: image51.png])

fa)




위 그림에서 waveguide간의 coupling거리 L을 조정하면 waveguide간의 phase mismatch Δß을 조절할 수 있는 데, 이를 이용하여 power의 transfer ratio를 아래의 식과 같이 나타내고 이를 사용하면 phase mismatch를 이용하여 power-transfer ratio을 제어할 수 있다. 
[image: image54.png]Waveguide 1
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일 때는 오른쪽 그림과 같이 power의 전달이 전혀 없음을 알 수 있다. 여기서 Δß는 전기장에 의한 굴절률변화를 이용하여 전기적으로 조절이 가능하여 electro-optic device로 이용된다. 
 구조 예 그림 및 설명 
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 Coupled wave eq. 
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 Oscillation 수식 
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