Pop Quiz

Fall, 2007

Course: 414.311A

1. Let define a vector $\vec{x}_{i}=\left(x_{i}, y_{i}, z_{i}\right)$ on a 3-D space.
(1) What is magnitude of \vec{x}_{i} ?
(2) Write a vector $\vec{X}_{1} \bullet \vec{X}_{2}$ where \bullet indicates vector dot product.
(3) Write a vector $\vec{X}_{1} \times \vec{X}_{2}$ where \times indicates vector cross product.
2. Let's consider the gradient in a 3-D space, s.t.

$$
\nabla=\frac{\partial}{\partial x} i+\frac{\partial}{\partial y} j+\frac{\partial}{\partial z} k
$$

where ($\mathrm{i}, \mathrm{j}, \mathrm{k}$) indicates unit vectors in the Cartesian coordinate.
(1) Find ∇F if $F=\sin (a x)+\cos (b y)+c z$
(2) Find $\nabla \vec{F}$ if $\vec{F}=(\cos (a x), \sin (b y), c z)$.
3. Describe the following terms:
(1) ideal fluid
(2) Newtonian flow
(3) Vorticity
(4) Velocity potential
(5) Streamline, Streakline, and pathline
(6) Added mass
4. In a 2-D fluid domain, Write the following equations. Use your own definition as needed.

- Laplace equation
- Bernoulli’s equation
- Navier-Stokes equation

5. Define the following transformation:
(1) Laplace Transformation
(2) Fourier Transformation
6. A $5-\mathrm{kg}$ ball is attached on a spring.
(1) Without any motion of the ball, it is observed that the spring is stretched $0.1-\mathrm{m}$. Find the spring constant.
(2) The spring is stretched a little bit more and released. Then the spring shows a regular oscillation. What is the period of oscillation that you can observe?
